水热法制备AgFe2O4/rGO纳米杂化物作为超级电容器的优良电极

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zahida Bibi , A. Qadoos , Areeba Sajjad , Meznah M. Alanazi , Shaimaa A.M. Abdelmohsen , Ahmed Hussain Jawhari , Muhammad Faizan , Muhammad Saleem
{"title":"水热法制备AgFe2O4/rGO纳米杂化物作为超级电容器的优良电极","authors":"Zahida Bibi ,&nbsp;A. Qadoos ,&nbsp;Areeba Sajjad ,&nbsp;Meznah M. Alanazi ,&nbsp;Shaimaa A.M. Abdelmohsen ,&nbsp;Ahmed Hussain Jawhari ,&nbsp;Muhammad Faizan ,&nbsp;Muhammad Saleem","doi":"10.1016/j.jpcs.2025.112910","DOIUrl":null,"url":null,"abstract":"<div><div>Energy is basic need of this modern era, and supercapacitors are well-known energy storage devices to fulfill this energy demand. The 90 % efficiency of SC<sub>s</sub> relay on its electrode material. Here, a novel and cost effective AgFe<sub>2</sub>O<sub>4</sub>/rGO nanohybrid electrode is fabricated via hydrothermal route for SC<sub>s</sub>.It is characterized via using several physical analytical techniques to examine the purity, crystallinity and functionality. The electrochemical potential of generated AgFe<sub>2</sub>O<sub>4</sub>/rGO electrode material was evaluated in basic media (KOH) using a three-electrode configuration. In electrochemical testing, GCD measurements demonstrated the maximum C<sub>s</sub> of 1158 F/g for AgFe<sub>2</sub>O<sub>4</sub>/rGO at current density (C<sub>d</sub>) of 1.0 A/g. The AgFe<sub>2</sub>O<sub>4</sub>/rGO depicted energy density (E<sub>d</sub>) of 51.10 Wh/kg and had good power density (P<sub>d</sub>) of 281.88 W/kg. This study reveals that incorporating of rGO nanosheets into AgFe<sub>2</sub>O<sub>4</sub> enhances the charge migration efficiency by offering convenient channel for passage of electrolytic ions. Hence, all these results exhibit that the produced AgFe<sub>2</sub>O<sub>4</sub>/rGO nanohybrid occurs viable choice for use in energy conversion and storage devices.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112910"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of AgFe2O4/rGO nanohybrid as superior electrode via hydrothermal method for supercapacitor applications\",\"authors\":\"Zahida Bibi ,&nbsp;A. Qadoos ,&nbsp;Areeba Sajjad ,&nbsp;Meznah M. Alanazi ,&nbsp;Shaimaa A.M. Abdelmohsen ,&nbsp;Ahmed Hussain Jawhari ,&nbsp;Muhammad Faizan ,&nbsp;Muhammad Saleem\",\"doi\":\"10.1016/j.jpcs.2025.112910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy is basic need of this modern era, and supercapacitors are well-known energy storage devices to fulfill this energy demand. The 90 % efficiency of SC<sub>s</sub> relay on its electrode material. Here, a novel and cost effective AgFe<sub>2</sub>O<sub>4</sub>/rGO nanohybrid electrode is fabricated via hydrothermal route for SC<sub>s</sub>.It is characterized via using several physical analytical techniques to examine the purity, crystallinity and functionality. The electrochemical potential of generated AgFe<sub>2</sub>O<sub>4</sub>/rGO electrode material was evaluated in basic media (KOH) using a three-electrode configuration. In electrochemical testing, GCD measurements demonstrated the maximum C<sub>s</sub> of 1158 F/g for AgFe<sub>2</sub>O<sub>4</sub>/rGO at current density (C<sub>d</sub>) of 1.0 A/g. The AgFe<sub>2</sub>O<sub>4</sub>/rGO depicted energy density (E<sub>d</sub>) of 51.10 Wh/kg and had good power density (P<sub>d</sub>) of 281.88 W/kg. This study reveals that incorporating of rGO nanosheets into AgFe<sub>2</sub>O<sub>4</sub> enhances the charge migration efficiency by offering convenient channel for passage of electrolytic ions. Hence, all these results exhibit that the produced AgFe<sub>2</sub>O<sub>4</sub>/rGO nanohybrid occurs viable choice for use in energy conversion and storage devices.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112910\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003622\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003622","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

能源是现代社会的基本需求,而超级电容器是满足这一需求的知名储能装置。sc继电器在其电极材料上的效率为90%。本文采用水热法制备了一种新型的、具有成本效益的纳米复合电极。它的特点是通过使用几种物理分析技术来检查纯度,结晶度和功能。采用三电极结构对制备的AgFe2O4/rGO电极材料在碱性介质(KOH)中的电化学电位进行了评价。在电化学测试中,GCD测量表明,在电流密度为1.0 A/g时,AgFe2O4/rGO的最大Cs为1158 F/g。AgFe2O4/rGO的能量密度(Ed)为51.10 Wh/kg,功率密度(Pd)为281.88 W/kg。研究表明,将还原氧化石墨烯纳米片掺入AgFe2O4中,为电解离子的通过提供了便利的通道,从而提高了电荷迁移效率。因此,所有这些结果表明,制备的AgFe2O4/rGO纳米杂化物在能量转换和存储器件中是可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of AgFe2O4/rGO nanohybrid as superior electrode via hydrothermal method for supercapacitor applications
Energy is basic need of this modern era, and supercapacitors are well-known energy storage devices to fulfill this energy demand. The 90 % efficiency of SCs relay on its electrode material. Here, a novel and cost effective AgFe2O4/rGO nanohybrid electrode is fabricated via hydrothermal route for SCs.It is characterized via using several physical analytical techniques to examine the purity, crystallinity and functionality. The electrochemical potential of generated AgFe2O4/rGO electrode material was evaluated in basic media (KOH) using a three-electrode configuration. In electrochemical testing, GCD measurements demonstrated the maximum Cs of 1158 F/g for AgFe2O4/rGO at current density (Cd) of 1.0 A/g. The AgFe2O4/rGO depicted energy density (Ed) of 51.10 Wh/kg and had good power density (Pd) of 281.88 W/kg. This study reveals that incorporating of rGO nanosheets into AgFe2O4 enhances the charge migration efficiency by offering convenient channel for passage of electrolytic ions. Hence, all these results exhibit that the produced AgFe2O4/rGO nanohybrid occurs viable choice for use in energy conversion and storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信