基于人工神经网络的双金属双栅负电容场效应管变分效应建模

IF 3 Q2 PHYSICS, CONDENSED MATTER
Yash Pathak , Laxman Prasad Goswami , Bansi Dhar Malhotra , Rishu Chaujar
{"title":"基于人工神经网络的双金属双栅负电容场效应管变分效应建模","authors":"Yash Pathak ,&nbsp;Laxman Prasad Goswami ,&nbsp;Bansi Dhar Malhotra ,&nbsp;Rishu Chaujar","doi":"10.1016/j.micrna.2025.208225","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have implemented an accurate machine-learning approach for predicting various key analog and RF parameters of Negative Capacitance Field-Effect Transistors (NCFETs). Visual TCAD simulator and the Python high-level language were employed for the entire simulation process. However, the computational cost was found to be excessively high. The machine learning approach represents a novel method for predicting the effects of different sources on NCFETs while also reducing computational costs. The algorithm of an artificial neural network can effectively predict multi-input to single-output relationships and enhance existing techniques. The analog parameters of Double Metal Double Gate Negative Capacitance FETs (D2GNCFETs) are demonstrated across various temperatures (<span><math><mi>T</mi></math></span>), oxide thicknesses (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>), substrate thicknesses (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub></math></span>), and ferroelectric thicknesses (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>F</mi><mi>e</mi></mrow></msub></math></span>). These findings can inform various applications in nanoelectronic devices and integrated circuit (IC) design.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208225"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network based modelling for variational effect on double metal double gate negative capacitance FET\",\"authors\":\"Yash Pathak ,&nbsp;Laxman Prasad Goswami ,&nbsp;Bansi Dhar Malhotra ,&nbsp;Rishu Chaujar\",\"doi\":\"10.1016/j.micrna.2025.208225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we have implemented an accurate machine-learning approach for predicting various key analog and RF parameters of Negative Capacitance Field-Effect Transistors (NCFETs). Visual TCAD simulator and the Python high-level language were employed for the entire simulation process. However, the computational cost was found to be excessively high. The machine learning approach represents a novel method for predicting the effects of different sources on NCFETs while also reducing computational costs. The algorithm of an artificial neural network can effectively predict multi-input to single-output relationships and enhance existing techniques. The analog parameters of Double Metal Double Gate Negative Capacitance FETs (D2GNCFETs) are demonstrated across various temperatures (<span><math><mi>T</mi></math></span>), oxide thicknesses (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>), substrate thicknesses (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub></math></span>), and ferroelectric thicknesses (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>F</mi><mi>e</mi></mrow></msub></math></span>). These findings can inform various applications in nanoelectronic devices and integrated circuit (IC) design.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"206 \",\"pages\":\"Article 208225\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们实现了一种准确的机器学习方法,用于预测负电容场效应晶体管(ncfet)的各种关键模拟和RF参数。整个仿真过程采用了Visual TCAD模拟器和Python高级语言。然而,计算成本过高。机器学习方法代表了一种预测不同来源对ncfet影响的新方法,同时也降低了计算成本。人工神经网络算法可以有效地预测多输入到单输出的关系,并对现有技术进行了改进。双金属双栅负电容fet (d2gncfet)的模拟参数在不同温度(T)、氧化物厚度(Tox)、衬底厚度(Tsub)和铁电厚度(TFe)下进行了演示。这些发现可以为纳米电子器件和集成电路(IC)设计的各种应用提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network based modelling for variational effect on double metal double gate negative capacitance FET
In this work, we have implemented an accurate machine-learning approach for predicting various key analog and RF parameters of Negative Capacitance Field-Effect Transistors (NCFETs). Visual TCAD simulator and the Python high-level language were employed for the entire simulation process. However, the computational cost was found to be excessively high. The machine learning approach represents a novel method for predicting the effects of different sources on NCFETs while also reducing computational costs. The algorithm of an artificial neural network can effectively predict multi-input to single-output relationships and enhance existing techniques. The analog parameters of Double Metal Double Gate Negative Capacitance FETs (D2GNCFETs) are demonstrated across various temperatures (T), oxide thicknesses (Tox), substrate thicknesses (Tsub), and ferroelectric thicknesses (TFe). These findings can inform various applications in nanoelectronic devices and integrated circuit (IC) design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信