在象限上具有线性阻尼的双曲型系统解的非线性扩散波的渐近性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Balakrishna Chhatria, T. Raja Sekhar
{"title":"在象限上具有线性阻尼的双曲型系统解的非线性扩散波的渐近性","authors":"Balakrishna Chhatria,&nbsp;T. Raja Sekhar","doi":"10.1016/j.amc.2025.129577","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the asymptotic behaviour on the quarter plane <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> of solutions of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> model. A more general system is considered here for the analysis. The global existence of solutions to the initial boundary value problem is first established under the constraints of small initial data and perturbations, which subsequently converge to their respective nonlinear diffusion waves, i.e., the solutions of the associated nonlinear parabolic equation arising from Darcy's law. Additionally, optimal convergence rates are established. The methodology employed relies on the energy method in conjunction with the Green's function method.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129577"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics towards nonlinear diffusion waves for the solutions of a hyperbolic system with linear damping on quadrant\",\"authors\":\"Balakrishna Chhatria,&nbsp;T. Raja Sekhar\",\"doi\":\"10.1016/j.amc.2025.129577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article explores the asymptotic behaviour on the quarter plane <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> of solutions of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> model. A more general system is considered here for the analysis. The global existence of solutions to the initial boundary value problem is first established under the constraints of small initial data and perturbations, which subsequently converge to their respective nonlinear diffusion waves, i.e., the solutions of the associated nonlinear parabolic equation arising from Darcy's law. Additionally, optimal convergence rates are established. The methodology employed relies on the energy method in conjunction with the Green's function method.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"507 \",\"pages\":\"Article 129577\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003030\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003030","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了M1模型解在四分之一平面(x,t)∈R+×R+上的渐近性质。这里考虑一个更一般的系统来进行分析。首先在初始数据和扰动较小的约束下,建立了初始边值问题解的整体存在性,然后收敛到各自的非线性扩散波,即由达西定律引起的相关非线性抛物方程的解。此外,还确定了最优收敛速率。所采用的方法依赖于能量法与格林函数法的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics towards nonlinear diffusion waves for the solutions of a hyperbolic system with linear damping on quadrant
This article explores the asymptotic behaviour on the quarter plane (x,t)R+×R+ of solutions of M1 model. A more general system is considered here for the analysis. The global existence of solutions to the initial boundary value problem is first established under the constraints of small initial data and perturbations, which subsequently converge to their respective nonlinear diffusion waves, i.e., the solutions of the associated nonlinear parabolic equation arising from Darcy's law. Additionally, optimal convergence rates are established. The methodology employed relies on the energy method in conjunction with the Green's function method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信