{"title":"群稀疏性的q-范数计算了l1的q-幂的近邻算子","authors":"Rongrong Lin , Shihai Chen , Han Feng , Yulan Liu","doi":"10.1016/j.acha.2025.101788","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we comprehensively characterize the proximal operator of the <em>q</em>-th power of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub></math></span>-norm (denoted by <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>) with <span><math><mn>0</mn><mo><</mo><mi>q</mi><mo><</mo><mn>1</mn></math></span> by exploiting the well-known proximal operator of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span> on the real line. In particular, much more explicit characterizations can be obtained whenever <span><math><mi>q</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> due to the existence of closed-form expressions for the proximal operators of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>. Numerical experiments demonstrate potential advantages of the <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> regularization in the inter-group and intra-group sparse vector recovery.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101788"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the proximal operator of the q-th power of the ℓ1,q-norm for group sparsity\",\"authors\":\"Rongrong Lin , Shihai Chen , Han Feng , Yulan Liu\",\"doi\":\"10.1016/j.acha.2025.101788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note, we comprehensively characterize the proximal operator of the <em>q</em>-th power of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub></math></span>-norm (denoted by <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>) with <span><math><mn>0</mn><mo><</mo><mi>q</mi><mo><</mo><mn>1</mn></math></span> by exploiting the well-known proximal operator of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span> on the real line. In particular, much more explicit characterizations can be obtained whenever <span><math><mi>q</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> due to the existence of closed-form expressions for the proximal operators of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>. Numerical experiments demonstrate potential advantages of the <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> regularization in the inter-group and intra-group sparse vector recovery.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101788\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000429\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000429","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Computing the proximal operator of the q-th power of the ℓ1,q-norm for group sparsity
In this note, we comprehensively characterize the proximal operator of the q-th power of the -norm (denoted by ) with by exploiting the well-known proximal operator of on the real line. In particular, much more explicit characterizations can be obtained whenever and due to the existence of closed-form expressions for the proximal operators of and . Numerical experiments demonstrate potential advantages of the regularization in the inter-group and intra-group sparse vector recovery.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.