群稀疏性的q-范数计算了l1的q-幂的近邻算子

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Rongrong Lin , Shihai Chen , Han Feng , Yulan Liu
{"title":"群稀疏性的q-范数计算了l1的q-幂的近邻算子","authors":"Rongrong Lin ,&nbsp;Shihai Chen ,&nbsp;Han Feng ,&nbsp;Yulan Liu","doi":"10.1016/j.acha.2025.101788","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we comprehensively characterize the proximal operator of the <em>q</em>-th power of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub></math></span>-norm (denoted by <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>) with <span><math><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></math></span> by exploiting the well-known proximal operator of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span> on the real line. In particular, much more explicit characterizations can be obtained whenever <span><math><mi>q</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> due to the existence of closed-form expressions for the proximal operators of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>. Numerical experiments demonstrate potential advantages of the <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> regularization in the inter-group and intra-group sparse vector recovery.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101788"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the proximal operator of the q-th power of the ℓ1,q-norm for group sparsity\",\"authors\":\"Rongrong Lin ,&nbsp;Shihai Chen ,&nbsp;Han Feng ,&nbsp;Yulan Liu\",\"doi\":\"10.1016/j.acha.2025.101788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note, we comprehensively characterize the proximal operator of the <em>q</em>-th power of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub></math></span>-norm (denoted by <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>) with <span><math><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></math></span> by exploiting the well-known proximal operator of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span> on the real line. In particular, much more explicit characterizations can be obtained whenever <span><math><mi>q</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> due to the existence of closed-form expressions for the proximal operators of <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>. Numerical experiments demonstrate potential advantages of the <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> regularization in the inter-group and intra-group sparse vector recovery.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101788\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000429\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000429","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用众所周知的实线上的|·|q的近端算子,综合刻画了0<;q<;1的q次幂的近端算子,q范数(表示为_1,qq)为0<;q<1。特别是,当q=1/2和q=2/3时,由于|⋅|1/2和|⋅|2/3的近端算子存在封闭表达式,可以得到更明确的表征。数值实验证明了正则化算法在群间和群内稀疏向量恢复中的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the proximal operator of the q-th power of the ℓ1,q-norm for group sparsity
In this note, we comprehensively characterize the proximal operator of the q-th power of the 1,q-norm (denoted by 1,qq) with 0<q<1 by exploiting the well-known proximal operator of ||q on the real line. In particular, much more explicit characterizations can be obtained whenever q=1/2 and q=2/3 due to the existence of closed-form expressions for the proximal operators of ||1/2 and ||2/3. Numerical experiments demonstrate potential advantages of the 1,qq regularization in the inter-group and intra-group sparse vector recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信