用于模拟和优化流动化学过程的混合机械和机器学习数字双胞胎:并行和基于串联的混合的比较分析

IF 5.5 Q1 ENGINEERING, CHEMICAL
Nur Aliya Nasruddin , Nazrul Islam , Sergio Vernuccio , John Oyekan
{"title":"用于模拟和优化流动化学过程的混合机械和机器学习数字双胞胎:并行和基于串联的混合的比较分析","authors":"Nur Aliya Nasruddin ,&nbsp;Nazrul Islam ,&nbsp;Sergio Vernuccio ,&nbsp;John Oyekan","doi":"10.1016/j.ceja.2025.100775","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of chemical engineering, accurate prediction of reaction kinetics and concentration profiles is critical for the design and optimisation of industrial processes. However, achieving accurate predictions under variable or limited data conditions remains a major challenge. Despite the growing interest in hybrid models, a systematic comparison of parallel and series-based hybridisation strategies using empirical flow reactor data for digital twin applications has not yet been established. Here we show that PINN architecture can accurately predict concentration profiles and estimate reaction rate constants under both data-rich and data-scarce conditions, while the SPH+GA framework enhances spatial simulation fidelity and enables system-level optimisation through particle-based modelling. The same PINN architecture can be effectively applied in both forward and inverse modes, accurately predicting concentration profiles and estimating reaction rate constants with errors under 2%, even in data-scarce conditions. The SPH+GA framework enables detailed particle-level simulation and global optimisation, offering insight into spatial dynamics and reactor mixing. This series hybrid model achieved an R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> up to 0.91 and enabled flexible system tuning. These results underscore the broader value of hybrid mechanistic–machine learning frameworks, particularly for process environments with limited or noisy data. Our findings highlight that while PINNs offer high predictive accuracy and lower computational cost, SPH+GA excels in resolving spatial dynamics and supporting system characterisation. These parallel and series hybrid strategies demonstrate complementary strengths for building robust digital twins of chemical processes.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100775"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridised mechanistic and machine learning digital twins for modelling and optimising chemical processes in flow: A comparative analysis of parallel and series-based hybridisation\",\"authors\":\"Nur Aliya Nasruddin ,&nbsp;Nazrul Islam ,&nbsp;Sergio Vernuccio ,&nbsp;John Oyekan\",\"doi\":\"10.1016/j.ceja.2025.100775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the field of chemical engineering, accurate prediction of reaction kinetics and concentration profiles is critical for the design and optimisation of industrial processes. However, achieving accurate predictions under variable or limited data conditions remains a major challenge. Despite the growing interest in hybrid models, a systematic comparison of parallel and series-based hybridisation strategies using empirical flow reactor data for digital twin applications has not yet been established. Here we show that PINN architecture can accurately predict concentration profiles and estimate reaction rate constants under both data-rich and data-scarce conditions, while the SPH+GA framework enhances spatial simulation fidelity and enables system-level optimisation through particle-based modelling. The same PINN architecture can be effectively applied in both forward and inverse modes, accurately predicting concentration profiles and estimating reaction rate constants with errors under 2%, even in data-scarce conditions. The SPH+GA framework enables detailed particle-level simulation and global optimisation, offering insight into spatial dynamics and reactor mixing. This series hybrid model achieved an R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> up to 0.91 and enabled flexible system tuning. These results underscore the broader value of hybrid mechanistic–machine learning frameworks, particularly for process environments with limited or noisy data. Our findings highlight that while PINNs offer high predictive accuracy and lower computational cost, SPH+GA excels in resolving spatial dynamics and supporting system characterisation. These parallel and series hybrid strategies demonstrate complementary strengths for building robust digital twins of chemical processes.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"23 \",\"pages\":\"Article 100775\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125000729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在化学工程领域,准确预测反应动力学和浓度分布对工业过程的设计和优化至关重要。然而,在可变或有限的数据条件下实现准确的预测仍然是一个主要挑战。尽管人们对混合模型的兴趣日益浓厚,但利用数字孪生应用的经验流动反应器数据对并行和串联混合策略进行系统比较的方法尚未建立。在这里,我们证明了在数据丰富和数据稀缺的条件下,PINN架构都可以准确地预测浓度分布和估计反应速率常数,而SPH+GA框架增强了空间模拟保真度,并通过基于粒子的建模实现了系统级优化。同样的PINN架构可以有效地应用于正反两种模式,即使在数据稀缺的条件下,也可以准确地预测浓度分布和估计反应速率常数,误差在2%以下。SPH+GA框架实现了详细的粒子级模拟和全局优化,提供了对空间动力学和反应器混合的洞察。该系列混合模型实现了R2高达0.91,并启用了灵活的系统调优。这些结果强调了混合机械-机器学习框架的更广泛价值,特别是对于数据有限或嘈杂的过程环境。我们的研究结果强调,虽然pinn具有较高的预测精度和较低的计算成本,但SPH+GA在解决空间动力学和支持系统表征方面表现出色。这些并联和串联混合策略展示了构建稳健的化学过程数字双胞胎的互补优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybridised mechanistic and machine learning digital twins for modelling and optimising chemical processes in flow: A comparative analysis of parallel and series-based hybridisation
In the field of chemical engineering, accurate prediction of reaction kinetics and concentration profiles is critical for the design and optimisation of industrial processes. However, achieving accurate predictions under variable or limited data conditions remains a major challenge. Despite the growing interest in hybrid models, a systematic comparison of parallel and series-based hybridisation strategies using empirical flow reactor data for digital twin applications has not yet been established. Here we show that PINN architecture can accurately predict concentration profiles and estimate reaction rate constants under both data-rich and data-scarce conditions, while the SPH+GA framework enhances spatial simulation fidelity and enables system-level optimisation through particle-based modelling. The same PINN architecture can be effectively applied in both forward and inverse modes, accurately predicting concentration profiles and estimating reaction rate constants with errors under 2%, even in data-scarce conditions. The SPH+GA framework enables detailed particle-level simulation and global optimisation, offering insight into spatial dynamics and reactor mixing. This series hybrid model achieved an R2 up to 0.91 and enabled flexible system tuning. These results underscore the broader value of hybrid mechanistic–machine learning frameworks, particularly for process environments with limited or noisy data. Our findings highlight that while PINNs offer high predictive accuracy and lower computational cost, SPH+GA excels in resolving spatial dynamics and supporting system characterisation. These parallel and series hybrid strategies demonstrate complementary strengths for building robust digital twins of chemical processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信