考虑柔性约束的高可再生能源并网新电力系统多阶段发电规划方法

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Danyang Li , Hongpeng Liu , Jingwei Zhang , Xu Han , Shuxin Zhang
{"title":"考虑柔性约束的高可再生能源并网新电力系统多阶段发电规划方法","authors":"Danyang Li ,&nbsp;Hongpeng Liu ,&nbsp;Jingwei Zhang ,&nbsp;Xu Han ,&nbsp;Shuxin Zhang","doi":"10.1016/j.ijepes.2025.110818","DOIUrl":null,"url":null,"abstract":"<div><div>Under the “dual-carbon” goals, the integration of high-proportion renewable energy has amplified operational uncertainties in new power systems, posing novel challenges to the economic planning of generation system expansion. However, existing power planning methodologies suffer from static modeling defects, incomplete constraint systems, and oversimplified cost structures, rendering them inadequate to support the low-carbon transition of emerging power systems. This necessitates a comprehensive consideration of system variability and flexibility to establish a multi-stage generation planning model. Addressing these limitations, this paper develops a fundamental multi-stage planning framework based on scenario tree structures, further incorporating carbon emissions and penalty costs for curtailed renewable energy. A flexibility-constrained multi-stage generation planning model is formulated, which resolves nonlinearity through auxiliary variable linearization and Benders decomposition algorithm. Case studies demonstrate that the proposed model achieves a 47.3% reduction in total 10-year planning costs for a typical regional system, comprising 39.5% operational cost savings and 46.3% carbon emission cost reduction, while elevating renewable energy accommodation rate to 80%. The model fulfills economic-environmental requirements and ensures system reliability.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"169 ","pages":"Article 110818"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistage power generation planning approach for new power systems with high renewable energy integration considering flexibility constraints\",\"authors\":\"Danyang Li ,&nbsp;Hongpeng Liu ,&nbsp;Jingwei Zhang ,&nbsp;Xu Han ,&nbsp;Shuxin Zhang\",\"doi\":\"10.1016/j.ijepes.2025.110818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Under the “dual-carbon” goals, the integration of high-proportion renewable energy has amplified operational uncertainties in new power systems, posing novel challenges to the economic planning of generation system expansion. However, existing power planning methodologies suffer from static modeling defects, incomplete constraint systems, and oversimplified cost structures, rendering them inadequate to support the low-carbon transition of emerging power systems. This necessitates a comprehensive consideration of system variability and flexibility to establish a multi-stage generation planning model. Addressing these limitations, this paper develops a fundamental multi-stage planning framework based on scenario tree structures, further incorporating carbon emissions and penalty costs for curtailed renewable energy. A flexibility-constrained multi-stage generation planning model is formulated, which resolves nonlinearity through auxiliary variable linearization and Benders decomposition algorithm. Case studies demonstrate that the proposed model achieves a 47.3% reduction in total 10-year planning costs for a typical regional system, comprising 39.5% operational cost savings and 46.3% carbon emission cost reduction, while elevating renewable energy accommodation rate to 80%. The model fulfills economic-environmental requirements and ensures system reliability.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"169 \",\"pages\":\"Article 110818\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525003667\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525003667","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在“双碳”目标下,高比例可再生能源的并网放大了新电力系统运行的不确定性,对发电系统扩容的经济规划提出了新的挑战。然而,现有的电力规划方法存在静态建模缺陷、约束体系不完善、成本结构过于简化等问题,难以支持新兴电力系统的低碳转型。这就需要综合考虑系统的可变性和灵活性来建立多阶段发电规划模型。针对这些限制,本文开发了一个基于情景树结构的基本多阶段规划框架,进一步纳入了碳排放和可再生能源削减的惩罚成本。建立了柔性约束下的多阶段发电规划模型,通过辅助变量线性化和Benders分解算法解决了非线性问题。案例研究表明,该模型将典型区域系统的10年总体规划成本降低了47.3%,其中包括39.5%的运营成本节约和46.3%的碳排放成本节约,同时将可再生能源容纳率提高到80%。该模型既满足经济环保要求,又保证了系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multistage power generation planning approach for new power systems with high renewable energy integration considering flexibility constraints
Under the “dual-carbon” goals, the integration of high-proportion renewable energy has amplified operational uncertainties in new power systems, posing novel challenges to the economic planning of generation system expansion. However, existing power planning methodologies suffer from static modeling defects, incomplete constraint systems, and oversimplified cost structures, rendering them inadequate to support the low-carbon transition of emerging power systems. This necessitates a comprehensive consideration of system variability and flexibility to establish a multi-stage generation planning model. Addressing these limitations, this paper develops a fundamental multi-stage planning framework based on scenario tree structures, further incorporating carbon emissions and penalty costs for curtailed renewable energy. A flexibility-constrained multi-stage generation planning model is formulated, which resolves nonlinearity through auxiliary variable linearization and Benders decomposition algorithm. Case studies demonstrate that the proposed model achieves a 47.3% reduction in total 10-year planning costs for a typical regional system, comprising 39.5% operational cost savings and 46.3% carbon emission cost reduction, while elevating renewable energy accommodation rate to 80%. The model fulfills economic-environmental requirements and ensures system reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信