Douglas C. Jaks , Ashish Shrestha , Christopher M. Chini
{"title":"美国空军设施雨水基础设施现代化的非固定降水设计标准","authors":"Douglas C. Jaks , Ashish Shrestha , Christopher M. Chini","doi":"10.1016/j.crm.2025.100718","DOIUrl":null,"url":null,"abstract":"<div><div>The resilience of defense infrastructure systems to a changing climate is critical for national security. Climate induced recurrent flooding is already impacting over 20 U.S. Air Force installations, underscoring the urgency of revisiting precipitation standards and stormwater infrastructure design. Despite growing scientific knowledge and an expanding set of tools for updating outdated precipitation standards based on the assumption of climate stationarity, the adoption of climate informed analyses remain limited in practice. This study utilizes an existing framework to update Intensity (or Depth)-Duration-Frequency (DDF) curves using an ensemble of future climate projections. Change factors in precipitation estimates are derived and applied to six USAF installations across the U.S. The analysis is further extended to evaluate the implications of climate-informed DDFs on stormwater infrastructure performance and flood analysis at Tyndall AFB. Results indicate that the current design precipitation estimates are likely to become obsolete in all six USAF bases by the end of the century. The wide range of change factors across 32 GCM ensembles highlights the need to integrate uncertainty and evolving scientific data into infrastructure planning. The study also finds that the impacts of a changing climate vary spatially and temporally, emphasizing the value of localized analysis for infrastructure decision-making. The work advances ongoing DoD and societal efforts to implement adaptation strategies aimed at enhancing infrastructure resilience.</div></div>","PeriodicalId":54226,"journal":{"name":"Climate Risk Management","volume":"49 ","pages":"Article 100718"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary precipitation design standards for stormwater infrastructure modernization at USAF installations\",\"authors\":\"Douglas C. Jaks , Ashish Shrestha , Christopher M. Chini\",\"doi\":\"10.1016/j.crm.2025.100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The resilience of defense infrastructure systems to a changing climate is critical for national security. Climate induced recurrent flooding is already impacting over 20 U.S. Air Force installations, underscoring the urgency of revisiting precipitation standards and stormwater infrastructure design. Despite growing scientific knowledge and an expanding set of tools for updating outdated precipitation standards based on the assumption of climate stationarity, the adoption of climate informed analyses remain limited in practice. This study utilizes an existing framework to update Intensity (or Depth)-Duration-Frequency (DDF) curves using an ensemble of future climate projections. Change factors in precipitation estimates are derived and applied to six USAF installations across the U.S. The analysis is further extended to evaluate the implications of climate-informed DDFs on stormwater infrastructure performance and flood analysis at Tyndall AFB. Results indicate that the current design precipitation estimates are likely to become obsolete in all six USAF bases by the end of the century. The wide range of change factors across 32 GCM ensembles highlights the need to integrate uncertainty and evolving scientific data into infrastructure planning. The study also finds that the impacts of a changing climate vary spatially and temporally, emphasizing the value of localized analysis for infrastructure decision-making. The work advances ongoing DoD and societal efforts to implement adaptation strategies aimed at enhancing infrastructure resilience.</div></div>\",\"PeriodicalId\":54226,\"journal\":{\"name\":\"Climate Risk Management\",\"volume\":\"49 \",\"pages\":\"Article 100718\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212096325000324\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Risk Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212096325000324","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Non-stationary precipitation design standards for stormwater infrastructure modernization at USAF installations
The resilience of defense infrastructure systems to a changing climate is critical for national security. Climate induced recurrent flooding is already impacting over 20 U.S. Air Force installations, underscoring the urgency of revisiting precipitation standards and stormwater infrastructure design. Despite growing scientific knowledge and an expanding set of tools for updating outdated precipitation standards based on the assumption of climate stationarity, the adoption of climate informed analyses remain limited in practice. This study utilizes an existing framework to update Intensity (or Depth)-Duration-Frequency (DDF) curves using an ensemble of future climate projections. Change factors in precipitation estimates are derived and applied to six USAF installations across the U.S. The analysis is further extended to evaluate the implications of climate-informed DDFs on stormwater infrastructure performance and flood analysis at Tyndall AFB. Results indicate that the current design precipitation estimates are likely to become obsolete in all six USAF bases by the end of the century. The wide range of change factors across 32 GCM ensembles highlights the need to integrate uncertainty and evolving scientific data into infrastructure planning. The study also finds that the impacts of a changing climate vary spatially and temporally, emphasizing the value of localized analysis for infrastructure decision-making. The work advances ongoing DoD and societal efforts to implement adaptation strategies aimed at enhancing infrastructure resilience.
期刊介绍:
Climate Risk Management publishes original scientific contributions, state-of-the-art reviews and reports of practical experience on the use of knowledge and information regarding the consequences of climate variability and climate change in decision and policy making on climate change responses from the near- to long-term.
The concept of climate risk management refers to activities and methods that are used by individuals, organizations, and institutions to facilitate climate-resilient decision-making. Its objective is to promote sustainable development by maximizing the beneficial impacts of climate change responses and minimizing negative impacts across the full spectrum of geographies and sectors that are potentially affected by the changing climate.