{"title":"突触发生的原理:来自秀丽隐杆线虫的见解","authors":"Elisa B. Frankel , Peri T. Kurshan","doi":"10.1016/j.conb.2025.103056","DOIUrl":null,"url":null,"abstract":"<div><div>Synapses are specialized junctions that facilitate communication between neurons and their target cells, playing pivotal roles in neuronal signaling, circuit wiring, and neural activity. Research using the model organism <em>Caenorhabditis elegans</em> has been instrumental in characterizing nervous system connectivity and uncovering the underlying genetic basis of synapse assembly, refinement, and remodeling <em>in vivo</em>. Recent advancements in <em>C. elegans</em> gene editing, microscopy, single-cell transcriptome profiling, and computational analysis have significantly advanced the field, enabling mechanistic insights into synapse formation and regulation during development and neural activity. In this review, we describe our current understanding of synapse formation, organization, and refinement based on insights gleaned from <em>C. elegans</em>, highlighting recent discoveries and discussing open questions and future directions.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103056"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principles of synaptogenesis: Insights from Caenorhabditis elegans\",\"authors\":\"Elisa B. Frankel , Peri T. Kurshan\",\"doi\":\"10.1016/j.conb.2025.103056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synapses are specialized junctions that facilitate communication between neurons and their target cells, playing pivotal roles in neuronal signaling, circuit wiring, and neural activity. Research using the model organism <em>Caenorhabditis elegans</em> has been instrumental in characterizing nervous system connectivity and uncovering the underlying genetic basis of synapse assembly, refinement, and remodeling <em>in vivo</em>. Recent advancements in <em>C. elegans</em> gene editing, microscopy, single-cell transcriptome profiling, and computational analysis have significantly advanced the field, enabling mechanistic insights into synapse formation and regulation during development and neural activity. In this review, we describe our current understanding of synapse formation, organization, and refinement based on insights gleaned from <em>C. elegans</em>, highlighting recent discoveries and discussing open questions and future directions.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"93 \",\"pages\":\"Article 103056\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095943882500087X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095943882500087X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Principles of synaptogenesis: Insights from Caenorhabditis elegans
Synapses are specialized junctions that facilitate communication between neurons and their target cells, playing pivotal roles in neuronal signaling, circuit wiring, and neural activity. Research using the model organism Caenorhabditis elegans has been instrumental in characterizing nervous system connectivity and uncovering the underlying genetic basis of synapse assembly, refinement, and remodeling in vivo. Recent advancements in C. elegans gene editing, microscopy, single-cell transcriptome profiling, and computational analysis have significantly advanced the field, enabling mechanistic insights into synapse formation and regulation during development and neural activity. In this review, we describe our current understanding of synapse formation, organization, and refinement based on insights gleaned from C. elegans, highlighting recent discoveries and discussing open questions and future directions.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience