哥德伯特-格林沃尔德炉镁尘云热表面着火特性研究

IF 4.2 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Tengfei Chen , Xiaoxing Zhong , Jo Van Caneghem , Yansen Lu , Qiu Zhong , Zhenzhen Zhao , Maarten Vanierschot
{"title":"哥德伯特-格林沃尔德炉镁尘云热表面着火特性研究","authors":"Tengfei Chen ,&nbsp;Xiaoxing Zhong ,&nbsp;Jo Van Caneghem ,&nbsp;Yansen Lu ,&nbsp;Qiu Zhong ,&nbsp;Zhenzhen Zhao ,&nbsp;Maarten Vanierschot","doi":"10.1016/j.jlp.2025.105702","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium dust cloud hot surface ignition characteristics in the Godbert-Greenwald (G-G) furnace are simulated. CFD models and algorithms selected for the simulation are validated through comparison between simulated dust cloud critical ignition temperature (<em>CIT</em>) results and experimental dust cloud minimum ignition temperature (<em>MIT</em>) data. The magnesium dust cloud ignition process in the G-G furnace mainly characterizes three stages: dust dispersion and cloud formation, dust cloud deposition and heat accumulation, and dust cloud thermal runaway. Particle size increase shortens particle residence time in the furnace and lifts the particle-gas thermal resistance, leading to more significant delays between particle ignition and gas flame formation for larger particle sizes over 100 μm. Under the marginal super-critical ignition state as the furnace heating temperature just reaches the <em>CIT</em> level, if the <em>CIT</em> of a specific particle sized dust cloud is higher than the <em>MIT</em> of the same sized single magnesium particle (<em>MITP</em>), the dust cloud ignition mainly characterizes an individual particle ignition driven mode, otherwise governed by a collective particle heating driven mode. The simulated magnesium dust cloud <em>CIT</em> stays rather stable under lower dust dispersion pressures (<em>P</em><sub><em>dis</em></sub>) below 2 kPa, but shows a clearer increasing trend as <em>P</em><sub><em>dis</em></sub> further rises.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"97 ","pages":"Article 105702"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the magnesium dust cloud hot surface ignition characteristics in the Godbert-Greenwald furnace\",\"authors\":\"Tengfei Chen ,&nbsp;Xiaoxing Zhong ,&nbsp;Jo Van Caneghem ,&nbsp;Yansen Lu ,&nbsp;Qiu Zhong ,&nbsp;Zhenzhen Zhao ,&nbsp;Maarten Vanierschot\",\"doi\":\"10.1016/j.jlp.2025.105702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnesium dust cloud hot surface ignition characteristics in the Godbert-Greenwald (G-G) furnace are simulated. CFD models and algorithms selected for the simulation are validated through comparison between simulated dust cloud critical ignition temperature (<em>CIT</em>) results and experimental dust cloud minimum ignition temperature (<em>MIT</em>) data. The magnesium dust cloud ignition process in the G-G furnace mainly characterizes three stages: dust dispersion and cloud formation, dust cloud deposition and heat accumulation, and dust cloud thermal runaway. Particle size increase shortens particle residence time in the furnace and lifts the particle-gas thermal resistance, leading to more significant delays between particle ignition and gas flame formation for larger particle sizes over 100 μm. Under the marginal super-critical ignition state as the furnace heating temperature just reaches the <em>CIT</em> level, if the <em>CIT</em> of a specific particle sized dust cloud is higher than the <em>MIT</em> of the same sized single magnesium particle (<em>MITP</em>), the dust cloud ignition mainly characterizes an individual particle ignition driven mode, otherwise governed by a collective particle heating driven mode. The simulated magnesium dust cloud <em>CIT</em> stays rather stable under lower dust dispersion pressures (<em>P</em><sub><em>dis</em></sub>) below 2 kPa, but shows a clearer increasing trend as <em>P</em><sub><em>dis</em></sub> further rises.</div></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":\"97 \",\"pages\":\"Article 105702\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950423025001603\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423025001603","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

模拟了哥德伯特-格林沃尔德(G-G)炉内镁尘云热表面点火特性。通过模拟粉尘云临界点火温度(CIT)与实验粉尘云最小点火温度(MIT)数据的对比,验证了所选择的CFD模型和算法的有效性。G-G炉镁尘云点火过程主要表现为粉尘扩散与云形成、粉尘云沉积与热积累、粉尘云热失控三个阶段。颗粒尺寸的增大缩短了颗粒在炉内的停留时间,提高了颗粒-气体热阻,当颗粒尺寸大于100 μm时,颗粒的点火和气体火焰形成之间的延迟更为明显。在炉体加热温度刚刚达到CIT水平的临界点火状态下,如果特定粒径粉尘云的CIT高于相同粒径单个镁颗粒(MITP)的MIT,则粉尘云点火主要表现为单个颗粒点火驱动模式,否则表现为集体颗粒加热驱动模式。模拟镁尘云CIT在较低粉尘分散压力(Pdis)低于2 kPa时保持较稳定,但随着Pdis的进一步升高,CIT呈明显的上升趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the magnesium dust cloud hot surface ignition characteristics in the Godbert-Greenwald furnace
Magnesium dust cloud hot surface ignition characteristics in the Godbert-Greenwald (G-G) furnace are simulated. CFD models and algorithms selected for the simulation are validated through comparison between simulated dust cloud critical ignition temperature (CIT) results and experimental dust cloud minimum ignition temperature (MIT) data. The magnesium dust cloud ignition process in the G-G furnace mainly characterizes three stages: dust dispersion and cloud formation, dust cloud deposition and heat accumulation, and dust cloud thermal runaway. Particle size increase shortens particle residence time in the furnace and lifts the particle-gas thermal resistance, leading to more significant delays between particle ignition and gas flame formation for larger particle sizes over 100 μm. Under the marginal super-critical ignition state as the furnace heating temperature just reaches the CIT level, if the CIT of a specific particle sized dust cloud is higher than the MIT of the same sized single magnesium particle (MITP), the dust cloud ignition mainly characterizes an individual particle ignition driven mode, otherwise governed by a collective particle heating driven mode. The simulated magnesium dust cloud CIT stays rather stable under lower dust dispersion pressures (Pdis) below 2 kPa, but shows a clearer increasing trend as Pdis further rises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信