{"title":"满矩阵代数上正则迹的刻画","authors":"Mohammad Sal Moslehian , Airat M. Bikchentaev","doi":"10.1016/j.jmaa.2025.129764","DOIUrl":null,"url":null,"abstract":"<div><div>We establish that a positive linear functional on the full matrix algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a positive multiple of the canonical trace if and only if <span><math><mi>φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>)</mo></math></span> implies that <em>A</em> is positive semidefinite. Furthermore, we characterize the canonical trace on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> among all positive linear functionals <em>φ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>φ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span> via Yang's inequality <span><math><mi>φ</mi><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>B</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≤</mo><mi>φ</mi><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, where <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are positive semidefinite matrices.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129764"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the canonical trace on full matrix algebras\",\"authors\":\"Mohammad Sal Moslehian , Airat M. Bikchentaev\",\"doi\":\"10.1016/j.jmaa.2025.129764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish that a positive linear functional on the full matrix algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a positive multiple of the canonical trace if and only if <span><math><mi>φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>)</mo></math></span> implies that <em>A</em> is positive semidefinite. Furthermore, we characterize the canonical trace on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> among all positive linear functionals <em>φ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>φ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span> via Yang's inequality <span><math><mi>φ</mi><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>B</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≤</mo><mi>φ</mi><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, where <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are positive semidefinite matrices.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129764\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005451\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005451","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
证明了满矩阵代数Mn上的正线性泛函是正则迹的正倍数,当且仅当φ(a)=φ(| a |)表明a是正半定的。进一步,利用杨氏不等式φ(A1/2BA1/2)1/2≤φ(A+B)/2,刻画了φ(I)=n的Mn上的所有正线性泛函φ在Mn上的正则迹,其中A,B∈Mn为正半定矩阵。
Characterizations of the canonical trace on full matrix algebras
We establish that a positive linear functional on the full matrix algebra is a positive multiple of the canonical trace if and only if implies that A is positive semidefinite. Furthermore, we characterize the canonical trace on among all positive linear functionals φ on with via Yang's inequality , where are positive semidefinite matrices.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.