{"title":"具有可分离变量的平面多项式哈密顿系统整体动力学的拓扑分类","authors":"Xuemeng Sun, Dongmei Xiao","doi":"10.1016/j.jde.2025.113496","DOIUrl":null,"url":null,"abstract":"<div><div>In the paper, we completely characterize the local dynamics of polynomial Hamiltonian systems with separable variables and provide a method to determine its global dynamics on Poincaré disk. It is shown that there are three (four) topological classifications for finite (infinite, resp.) singular points of the Hamiltonian system with any degree <em>n</em>, and its global dynamics can be determined by the number of singular points and their separatrix skeleton. This provides an approach to characterize the topological classification of real algebraic curves <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> are real polynomials of degrees <em>m</em> and <em>n</em>, respectively.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113496"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological classification of global dynamics of planar polynomial Hamiltonian systems with separable variables\",\"authors\":\"Xuemeng Sun, Dongmei Xiao\",\"doi\":\"10.1016/j.jde.2025.113496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the paper, we completely characterize the local dynamics of polynomial Hamiltonian systems with separable variables and provide a method to determine its global dynamics on Poincaré disk. It is shown that there are three (four) topological classifications for finite (infinite, resp.) singular points of the Hamiltonian system with any degree <em>n</em>, and its global dynamics can be determined by the number of singular points and their separatrix skeleton. This provides an approach to characterize the topological classification of real algebraic curves <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> are real polynomials of degrees <em>m</em> and <em>n</em>, respectively.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113496\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005236\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005236","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Topological classification of global dynamics of planar polynomial Hamiltonian systems with separable variables
In the paper, we completely characterize the local dynamics of polynomial Hamiltonian systems with separable variables and provide a method to determine its global dynamics on Poincaré disk. It is shown that there are three (four) topological classifications for finite (infinite, resp.) singular points of the Hamiltonian system with any degree n, and its global dynamics can be determined by the number of singular points and their separatrix skeleton. This provides an approach to characterize the topological classification of real algebraic curves in , where and are real polynomials of degrees m and n, respectively.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics