具有可分离变量的平面多项式哈密顿系统整体动力学的拓扑分类

IF 2.3 2区 数学 Q1 MATHEMATICS
Xuemeng Sun, Dongmei Xiao
{"title":"具有可分离变量的平面多项式哈密顿系统整体动力学的拓扑分类","authors":"Xuemeng Sun,&nbsp;Dongmei Xiao","doi":"10.1016/j.jde.2025.113496","DOIUrl":null,"url":null,"abstract":"<div><div>In the paper, we completely characterize the local dynamics of polynomial Hamiltonian systems with separable variables and provide a method to determine its global dynamics on Poincaré disk. It is shown that there are three (four) topological classifications for finite (infinite, resp.) singular points of the Hamiltonian system with any degree <em>n</em>, and its global dynamics can be determined by the number of singular points and their separatrix skeleton. This provides an approach to characterize the topological classification of real algebraic curves <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> are real polynomials of degrees <em>m</em> and <em>n</em>, respectively.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113496"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological classification of global dynamics of planar polynomial Hamiltonian systems with separable variables\",\"authors\":\"Xuemeng Sun,&nbsp;Dongmei Xiao\",\"doi\":\"10.1016/j.jde.2025.113496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the paper, we completely characterize the local dynamics of polynomial Hamiltonian systems with separable variables and provide a method to determine its global dynamics on Poincaré disk. It is shown that there are three (four) topological classifications for finite (infinite, resp.) singular points of the Hamiltonian system with any degree <em>n</em>, and its global dynamics can be determined by the number of singular points and their separatrix skeleton. This provides an approach to characterize the topological classification of real algebraic curves <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> are real polynomials of degrees <em>m</em> and <em>n</em>, respectively.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113496\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005236\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005236","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文完整地刻画了具有可分离变量的多项式哈密顿系统的局部动力学性质,并给出了确定其在庞卡罗圆盘上的全局动力学的一种方法。证明了任意n次哈密顿系统的有限(无限)奇点存在三(4)种拓扑分类,其全局动力学可以由奇点的数目及其分离矩阵骨架来确定。这提供了一种表征R2中实代数曲线H1(x)+H2(y)=0的拓扑分类的方法,其中H1(x)和H2(y)分别是m和n次的实多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological classification of global dynamics of planar polynomial Hamiltonian systems with separable variables
In the paper, we completely characterize the local dynamics of polynomial Hamiltonian systems with separable variables and provide a method to determine its global dynamics on Poincaré disk. It is shown that there are three (four) topological classifications for finite (infinite, resp.) singular points of the Hamiltonian system with any degree n, and its global dynamics can be determined by the number of singular points and their separatrix skeleton. This provides an approach to characterize the topological classification of real algebraic curves H1(x)+H2(y)=0 in R2, where H1(x) and H2(y) are real polynomials of degrees m and n, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信