Yuanjing Zheng , Yue Li , Zhengyang Wei , Yang Wang , Yuanlin Liu , Fengsong Liu , Xue Li , Yi Zhang
{"title":"huc - msc衍生的外泌体miR-16-5p通过双重抑制M1巨噬细胞极化和Th1分化来减轻炎症","authors":"Yuanjing Zheng , Yue Li , Zhengyang Wei , Yang Wang , Yuanlin Liu , Fengsong Liu , Xue Li , Yi Zhang","doi":"10.1016/j.bbrep.2025.102078","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising cell-free therapeutic alternative to MSC-based therapies, demonstrating efficacy in treating degenerative diseases, inflammatory disorders, and autoimmune diseases. MSC-Exos transport bioactive cargoes such as proteins, lipids, mRNAs, and microRNAs (miRNAs) to the recipient cells, mediating intercellular communication to regulate immunomodulation and tissue repair. However, the exosomal miRNA profile varies dynamically based on the culture conditions and tissue sources. Thus, elucidating the specific exosomal miRNA profile and regulatory targets is critical for the precise clinical applications and development of MSC-Exos-based cell-free therapies.</div><div>Here we established an optimized serum-free culture system for human umbilical cord-derived MSCs (hUC-MSCs) and determined the critical 48–72-h harvest window for exosome secretion. High-throughput sequencing identified miR-16-5p as the predominant exosomal miRNA, functioning as a core immunosuppressive effector by suppressing LPS/IFN-γ-induced M1 macrophage polarization and Th1 cell differentiation. Mechanistically, miR-16-5p was found to target key nodes in NF-κB and JAK-STAT pathways, validated via dual-luciferase assays. Additionally, miR-125b-5p and miR-34a-5p enhanced this immunosuppressive effect by co-targeting overlapping pathway components in NF-κB and JAK-STAT pathways, suggesting a multilayered regulatory network. Taken together, our findings highlight the potential of miRNA-engineered exosomes as standardized therapies for inflammatory disorders, emphasizing the importance of optimizing culture conditions and profiling miRNA expression over time in advancing clinical translation.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102078"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HUC-MSC-derived exosomal miR-16-5p attenuates inflammation via dual suppression of M1 macrophage polarization and Th1 differentiation\",\"authors\":\"Yuanjing Zheng , Yue Li , Zhengyang Wei , Yang Wang , Yuanlin Liu , Fengsong Liu , Xue Li , Yi Zhang\",\"doi\":\"10.1016/j.bbrep.2025.102078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nowadays mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising cell-free therapeutic alternative to MSC-based therapies, demonstrating efficacy in treating degenerative diseases, inflammatory disorders, and autoimmune diseases. MSC-Exos transport bioactive cargoes such as proteins, lipids, mRNAs, and microRNAs (miRNAs) to the recipient cells, mediating intercellular communication to regulate immunomodulation and tissue repair. However, the exosomal miRNA profile varies dynamically based on the culture conditions and tissue sources. Thus, elucidating the specific exosomal miRNA profile and regulatory targets is critical for the precise clinical applications and development of MSC-Exos-based cell-free therapies.</div><div>Here we established an optimized serum-free culture system for human umbilical cord-derived MSCs (hUC-MSCs) and determined the critical 48–72-h harvest window for exosome secretion. High-throughput sequencing identified miR-16-5p as the predominant exosomal miRNA, functioning as a core immunosuppressive effector by suppressing LPS/IFN-γ-induced M1 macrophage polarization and Th1 cell differentiation. Mechanistically, miR-16-5p was found to target key nodes in NF-κB and JAK-STAT pathways, validated via dual-luciferase assays. Additionally, miR-125b-5p and miR-34a-5p enhanced this immunosuppressive effect by co-targeting overlapping pathway components in NF-κB and JAK-STAT pathways, suggesting a multilayered regulatory network. Taken together, our findings highlight the potential of miRNA-engineered exosomes as standardized therapies for inflammatory disorders, emphasizing the importance of optimizing culture conditions and profiling miRNA expression over time in advancing clinical translation.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"43 \",\"pages\":\"Article 102078\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
HUC-MSC-derived exosomal miR-16-5p attenuates inflammation via dual suppression of M1 macrophage polarization and Th1 differentiation
Nowadays mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising cell-free therapeutic alternative to MSC-based therapies, demonstrating efficacy in treating degenerative diseases, inflammatory disorders, and autoimmune diseases. MSC-Exos transport bioactive cargoes such as proteins, lipids, mRNAs, and microRNAs (miRNAs) to the recipient cells, mediating intercellular communication to regulate immunomodulation and tissue repair. However, the exosomal miRNA profile varies dynamically based on the culture conditions and tissue sources. Thus, elucidating the specific exosomal miRNA profile and regulatory targets is critical for the precise clinical applications and development of MSC-Exos-based cell-free therapies.
Here we established an optimized serum-free culture system for human umbilical cord-derived MSCs (hUC-MSCs) and determined the critical 48–72-h harvest window for exosome secretion. High-throughput sequencing identified miR-16-5p as the predominant exosomal miRNA, functioning as a core immunosuppressive effector by suppressing LPS/IFN-γ-induced M1 macrophage polarization and Th1 cell differentiation. Mechanistically, miR-16-5p was found to target key nodes in NF-κB and JAK-STAT pathways, validated via dual-luciferase assays. Additionally, miR-125b-5p and miR-34a-5p enhanced this immunosuppressive effect by co-targeting overlapping pathway components in NF-κB and JAK-STAT pathways, suggesting a multilayered regulatory network. Taken together, our findings highlight the potential of miRNA-engineered exosomes as standardized therapies for inflammatory disorders, emphasizing the importance of optimizing culture conditions and profiling miRNA expression over time in advancing clinical translation.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.