{"title":"海洋中的塑料碳","authors":"Shiye Zhao , Lixin Zhu","doi":"10.1016/j.coche.2025.101101","DOIUrl":null,"url":null,"abstract":"<div><div>The annual influx of ∼11 million metric tons of plastic debris into the ocean poses a significant and growing threat to the marine environment globally. Additionally, plastic debris serves as a source of allochthonous carbon to marine ecosystems — a factor that has only drawn scientific attention recently. Herein, we synthesize recent evidence about this new form of plastic carbon in the ocean by addressing it as three components: particulate organic carbon of plastic (<em>pPOC</em>), dissolved organic carbon leaching from plastic (<em>pDOC</em>), and biogenic organic carbon of plastic-attached biofilm (<em>pBOC</em>). Current estimates of <em>pPOC</em> and <em>pDOC</em> account for only a modest fraction of natural carbon pool in the ocean, but their portions are expected to increase. <em>pDOC</em> is highly heterogenous, varying by polymer types, and has been shown to influence seawater biogeochemistry as well as the structure and function of microbial communities. Furthermore, biofilm biomass colonizing on plastic debris can utilize the <em>pP</em>OC and <em>pDOC</em> as carbon sources. Current evidences proved the incorporation of plastic carbon into microbial biomass, which consequently affects the carbon and nitrogen cycling. Given these emerging insights, we further suggest specific research questions aimed at stimulating research on the nature, dynamics, and role of plastic carbon in the ocean.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101101"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic carbon in the ocean\",\"authors\":\"Shiye Zhao , Lixin Zhu\",\"doi\":\"10.1016/j.coche.2025.101101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The annual influx of ∼11 million metric tons of plastic debris into the ocean poses a significant and growing threat to the marine environment globally. Additionally, plastic debris serves as a source of allochthonous carbon to marine ecosystems — a factor that has only drawn scientific attention recently. Herein, we synthesize recent evidence about this new form of plastic carbon in the ocean by addressing it as three components: particulate organic carbon of plastic (<em>pPOC</em>), dissolved organic carbon leaching from plastic (<em>pDOC</em>), and biogenic organic carbon of plastic-attached biofilm (<em>pBOC</em>). Current estimates of <em>pPOC</em> and <em>pDOC</em> account for only a modest fraction of natural carbon pool in the ocean, but their portions are expected to increase. <em>pDOC</em> is highly heterogenous, varying by polymer types, and has been shown to influence seawater biogeochemistry as well as the structure and function of microbial communities. Furthermore, biofilm biomass colonizing on plastic debris can utilize the <em>pP</em>OC and <em>pDOC</em> as carbon sources. Current evidences proved the incorporation of plastic carbon into microbial biomass, which consequently affects the carbon and nitrogen cycling. Given these emerging insights, we further suggest specific research questions aimed at stimulating research on the nature, dynamics, and role of plastic carbon in the ocean.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Article 101101\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000127\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000127","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The annual influx of ∼11 million metric tons of plastic debris into the ocean poses a significant and growing threat to the marine environment globally. Additionally, plastic debris serves as a source of allochthonous carbon to marine ecosystems — a factor that has only drawn scientific attention recently. Herein, we synthesize recent evidence about this new form of plastic carbon in the ocean by addressing it as three components: particulate organic carbon of plastic (pPOC), dissolved organic carbon leaching from plastic (pDOC), and biogenic organic carbon of plastic-attached biofilm (pBOC). Current estimates of pPOC and pDOC account for only a modest fraction of natural carbon pool in the ocean, but their portions are expected to increase. pDOC is highly heterogenous, varying by polymer types, and has been shown to influence seawater biogeochemistry as well as the structure and function of microbial communities. Furthermore, biofilm biomass colonizing on plastic debris can utilize the pPOC and pDOC as carbon sources. Current evidences proved the incorporation of plastic carbon into microbial biomass, which consequently affects the carbon and nitrogen cycling. Given these emerging insights, we further suggest specific research questions aimed at stimulating research on the nature, dynamics, and role of plastic carbon in the ocean.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.