{"title":"平衡二部图中哈密顿-双连通距离3的度条件","authors":"Ruixia Wang, Jia Wang, Qiaoping Guo, Wei Meng","doi":"10.1016/j.disc.2025.114629","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected balanced bipartite graph of order 2<em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. For <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, we denote by dist <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> the distance between <em>x</em> and <em>y</em>, that is, the length of a shortest path connecting <em>x</em> and <em>y</em>. Denote <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>:</mo><mtext>dist</mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>3</mn><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo></math></span>, if <em>G</em> is not a complete bipartite graph; otherwise <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. In 1993, Amar proved that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian. In this paper, we first prove that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi></math></span> implies that <em>G</em> contains a hamiltonian path. Using this result, we also characterize all non-hamiltonian bipartite graphs with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span>. Moreover, we prove that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> or <em>G</em> is 3-connected and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian-biconnected. The lower bounds provided in these results are shown to be sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114629"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree condition on distance three for Hamiltonian-biconnected in balanced bipartite graphs\",\"authors\":\"Ruixia Wang, Jia Wang, Qiaoping Guo, Wei Meng\",\"doi\":\"10.1016/j.disc.2025.114629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a connected balanced bipartite graph of order 2<em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. For <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, we denote by dist <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> the distance between <em>x</em> and <em>y</em>, that is, the length of a shortest path connecting <em>x</em> and <em>y</em>. Denote <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>:</mo><mtext>dist</mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>3</mn><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo></math></span>, if <em>G</em> is not a complete bipartite graph; otherwise <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. In 1993, Amar proved that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian. In this paper, we first prove that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi></math></span> implies that <em>G</em> contains a hamiltonian path. Using this result, we also characterize all non-hamiltonian bipartite graphs with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span>. Moreover, we prove that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> or <em>G</em> is 3-connected and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian-biconnected. The lower bounds provided in these results are shown to be sharp.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114629\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002377\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002377","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Degree condition on distance three for Hamiltonian-biconnected in balanced bipartite graphs
Let G be a connected balanced bipartite graph of order 2n with . For , we denote by dist the distance between x and y, that is, the length of a shortest path connecting x and y. Denote , if G is not a complete bipartite graph; otherwise . In 1993, Amar proved that if , then G is hamiltonian. In this paper, we first prove that implies that G contains a hamiltonian path. Using this result, we also characterize all non-hamiltonian bipartite graphs with . Moreover, we prove that if or G is 3-connected and , then G is hamiltonian-biconnected. The lower bounds provided in these results are shown to be sharp.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.