平衡二部图中哈密顿-双连通距离3的度条件

IF 0.7 3区 数学 Q2 MATHEMATICS
Ruixia Wang, Jia Wang, Qiaoping Guo, Wei Meng
{"title":"平衡二部图中哈密顿-双连通距离3的度条件","authors":"Ruixia Wang,&nbsp;Jia Wang,&nbsp;Qiaoping Guo,&nbsp;Wei Meng","doi":"10.1016/j.disc.2025.114629","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected balanced bipartite graph of order 2<em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. For <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, we denote by dist <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> the distance between <em>x</em> and <em>y</em>, that is, the length of a shortest path connecting <em>x</em> and <em>y</em>. Denote <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>:</mo><mtext>dist</mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>3</mn><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo></math></span>, if <em>G</em> is not a complete bipartite graph; otherwise <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. In 1993, Amar proved that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian. In this paper, we first prove that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi></math></span> implies that <em>G</em> contains a hamiltonian path. Using this result, we also characterize all non-hamiltonian bipartite graphs with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span>. Moreover, we prove that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> or <em>G</em> is 3-connected and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian-biconnected. The lower bounds provided in these results are shown to be sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114629"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree condition on distance three for Hamiltonian-biconnected in balanced bipartite graphs\",\"authors\":\"Ruixia Wang,&nbsp;Jia Wang,&nbsp;Qiaoping Guo,&nbsp;Wei Meng\",\"doi\":\"10.1016/j.disc.2025.114629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a connected balanced bipartite graph of order 2<em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. For <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, we denote by dist <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> the distance between <em>x</em> and <em>y</em>, that is, the length of a shortest path connecting <em>x</em> and <em>y</em>. Denote <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>:</mo><mtext>dist</mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>3</mn><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo></math></span>, if <em>G</em> is not a complete bipartite graph; otherwise <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. In 1993, Amar proved that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian. In this paper, we first prove that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi></math></span> implies that <em>G</em> contains a hamiltonian path. Using this result, we also characterize all non-hamiltonian bipartite graphs with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span>. Moreover, we prove that if <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> or <em>G</em> is 3-connected and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, then <em>G</em> is hamiltonian-biconnected. The lower bounds provided in these results are shown to be sharp.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114629\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002377\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002377","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G为2n阶连通平衡二部图,且n≥2。对于x,y∈V(G),我们用dist(x,y)表示x到y之间的距离,即连接x和y的最短路径的长度。令μ3(G)=min (d(x)+d(y):dist(x,y)=3,x,y∈V(G)},如果G不是完全二部图;否则μ3 (G) = +∞。1993年,Amar证明了如果μ3(G)≥n+1,则G是哈密顿量。本文首先证明了μ3(G)≥n意味着G包含一条哈密顿路径。利用这一结果,我们也刻画了μ3(G)=n的所有非哈密顿二部图。进一步证明了若μ3(G)≥n+2或μ3(G)为3连通且μ3(G)≥n+1,则G为哈密顿双连通。在这些结果中提供的下界被证明是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree condition on distance three for Hamiltonian-biconnected in balanced bipartite graphs
Let G be a connected balanced bipartite graph of order 2n with n2. For x,yV(G), we denote by dist (x,y) the distance between x and y, that is, the length of a shortest path connecting x and y. Denote μ3(G)=min{d(x)+d(y):dist(x,y)=3,x,yV(G)}, if G is not a complete bipartite graph; otherwise μ3(G)=+. In 1993, Amar proved that if μ3(G)n+1, then G is hamiltonian. In this paper, we first prove that μ3(G)n implies that G contains a hamiltonian path. Using this result, we also characterize all non-hamiltonian bipartite graphs with μ3(G)=n. Moreover, we prove that if μ3(G)n+2 or G is 3-connected and μ3(G)n+1, then G is hamiltonian-biconnected. The lower bounds provided in these results are shown to be sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信