Xingjie Zhou , Haifeng Wang , Jiawei Wang , Hao Wang , Dehua Ma , Zhengqing Pei , Ju Lu , Kexin Zheng
{"title":"液相氧化法制备镍锰复合氧化物及其在高压LiNi0.5Mn1.5O4合成中的性能研究","authors":"Xingjie Zhou , Haifeng Wang , Jiawei Wang , Hao Wang , Dehua Ma , Zhengqing Pei , Ju Lu , Kexin Zheng","doi":"10.1016/j.ssi.2025.116914","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its high operating voltage, high safety, and low cost, spinel-type lithium nickel manganese oxide(LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>) has become a research hotspot in the field of lithium-ion battery cathode materials in recent years. In this study, a new lithium nickel manganese oxide precursor, a nickel‑manganese composite oxide, was prepared using a liquid-phase oxidation method, and the cathode material was synthesized through high-temperature calcination. The effects of different raw material ratios on the preparation of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> and their mechanisms were investigated. Considering that acetylene black tends to undergo thermal decomposition and electrochemical reactions in high voltage systems, leading to degradation and performance decline, Super C65 was used as a conductive agent instead of acetylene black to achieve better electrochemical performance. The experimental results indicate that when the Ni/Mn molar ratio is 1:2.5, the resulting nickel‑manganese composite oxide exhibits good crystallinity and a Fd-3 m space group structure with uniform particle dispersion and weak agglomeration. When mixed with LiOH and subjected to high-temperature calcination, with a Li/M molar ratio (M = Mn + Ni) of 0.51, the formation of the Li<sub>x</sub>Ni<sub>1-x</sub>O impurity phase and the polarization of the material were significantly improved. The prepared LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> has uniform particle size, well-defined octahedral morphology, and pure phase characteristics. At a current density of 0.2C, the initial discharge specific capacity reaches 135 mAh/g and remains at 118 mAh/g after 200 cycles. After replacing acetylene black with Super C65, the initial discharge specific capacity of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> at 0.2C increased to 140 mAh/g, with a discharge specific capacity of 122 mAh/g after 200 cycles, and the electrochemical impedance decreased from 304 Ω to 266 Ω. This improvement is attributed to the smaller particle size of Super C65, which can embed between the spinel material particles to form a good conductive network, increase the lattice parameters of the disordered space cluster structure, provide more diffusion paths for ions, facilitate the rapid change of element valence states, and thereby demonstrate higher electronic conductivity. Although the cycling retention slightly decreased, the overall electrochemical performance was enhanced.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"428 ","pages":"Article 116914"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the liquid-phase oxidation preparation of nickel-manganese composite oxides and their performance in high-voltage LiNi0.5Mn1.5O4 synthesis\",\"authors\":\"Xingjie Zhou , Haifeng Wang , Jiawei Wang , Hao Wang , Dehua Ma , Zhengqing Pei , Ju Lu , Kexin Zheng\",\"doi\":\"10.1016/j.ssi.2025.116914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to its high operating voltage, high safety, and low cost, spinel-type lithium nickel manganese oxide(LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>) has become a research hotspot in the field of lithium-ion battery cathode materials in recent years. In this study, a new lithium nickel manganese oxide precursor, a nickel‑manganese composite oxide, was prepared using a liquid-phase oxidation method, and the cathode material was synthesized through high-temperature calcination. The effects of different raw material ratios on the preparation of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> and their mechanisms were investigated. Considering that acetylene black tends to undergo thermal decomposition and electrochemical reactions in high voltage systems, leading to degradation and performance decline, Super C65 was used as a conductive agent instead of acetylene black to achieve better electrochemical performance. The experimental results indicate that when the Ni/Mn molar ratio is 1:2.5, the resulting nickel‑manganese composite oxide exhibits good crystallinity and a Fd-3 m space group structure with uniform particle dispersion and weak agglomeration. When mixed with LiOH and subjected to high-temperature calcination, with a Li/M molar ratio (M = Mn + Ni) of 0.51, the formation of the Li<sub>x</sub>Ni<sub>1-x</sub>O impurity phase and the polarization of the material were significantly improved. The prepared LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> has uniform particle size, well-defined octahedral morphology, and pure phase characteristics. At a current density of 0.2C, the initial discharge specific capacity reaches 135 mAh/g and remains at 118 mAh/g after 200 cycles. After replacing acetylene black with Super C65, the initial discharge specific capacity of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> at 0.2C increased to 140 mAh/g, with a discharge specific capacity of 122 mAh/g after 200 cycles, and the electrochemical impedance decreased from 304 Ω to 266 Ω. This improvement is attributed to the smaller particle size of Super C65, which can embed between the spinel material particles to form a good conductive network, increase the lattice parameters of the disordered space cluster structure, provide more diffusion paths for ions, facilitate the rapid change of element valence states, and thereby demonstrate higher electronic conductivity. Although the cycling retention slightly decreased, the overall electrochemical performance was enhanced.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"428 \",\"pages\":\"Article 116914\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727382500133X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382500133X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Study on the liquid-phase oxidation preparation of nickel-manganese composite oxides and their performance in high-voltage LiNi0.5Mn1.5O4 synthesis
Due to its high operating voltage, high safety, and low cost, spinel-type lithium nickel manganese oxide(LiNi0.5Mn1.5O4) has become a research hotspot in the field of lithium-ion battery cathode materials in recent years. In this study, a new lithium nickel manganese oxide precursor, a nickel‑manganese composite oxide, was prepared using a liquid-phase oxidation method, and the cathode material was synthesized through high-temperature calcination. The effects of different raw material ratios on the preparation of LiNi0.5Mn1.5O4 and their mechanisms were investigated. Considering that acetylene black tends to undergo thermal decomposition and electrochemical reactions in high voltage systems, leading to degradation and performance decline, Super C65 was used as a conductive agent instead of acetylene black to achieve better electrochemical performance. The experimental results indicate that when the Ni/Mn molar ratio is 1:2.5, the resulting nickel‑manganese composite oxide exhibits good crystallinity and a Fd-3 m space group structure with uniform particle dispersion and weak agglomeration. When mixed with LiOH and subjected to high-temperature calcination, with a Li/M molar ratio (M = Mn + Ni) of 0.51, the formation of the LixNi1-xO impurity phase and the polarization of the material were significantly improved. The prepared LiNi0.5Mn1.5O4 has uniform particle size, well-defined octahedral morphology, and pure phase characteristics. At a current density of 0.2C, the initial discharge specific capacity reaches 135 mAh/g and remains at 118 mAh/g after 200 cycles. After replacing acetylene black with Super C65, the initial discharge specific capacity of LiNi0.5Mn1.5O4 at 0.2C increased to 140 mAh/g, with a discharge specific capacity of 122 mAh/g after 200 cycles, and the electrochemical impedance decreased from 304 Ω to 266 Ω. This improvement is attributed to the smaller particle size of Super C65, which can embed between the spinel material particles to form a good conductive network, increase the lattice parameters of the disordered space cluster structure, provide more diffusion paths for ions, facilitate the rapid change of element valence states, and thereby demonstrate higher electronic conductivity. Although the cycling retention slightly decreased, the overall electrochemical performance was enhanced.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.