Chen-Hung Ting , Shao-Ting Tai , Hsiang-Yu Chang , Po-Ya Huang , Lo-Fan Cheng , Hsing-Jung Lai , Yih-Chih Kuo , Chia-Hsin Kao , I-Fan Wang , Li-Kai Tsai
{"title":"黄芩素通过减少神经元内错误折叠蛋白对肌萎缩性侧索硬化症有益","authors":"Chen-Hung Ting , Shao-Ting Tai , Hsiang-Yu Chang , Po-Ya Huang , Lo-Fan Cheng , Hsing-Jung Lai , Yih-Chih Kuo , Chia-Hsin Kao , I-Fan Wang , Li-Kai Tsai","doi":"10.1016/j.bbagen.2025.130831","DOIUrl":null,"url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterized by muscle weakness and atrophy, with limited treatment options. The accumulation of misfolded proteins, such as misfolded superoxide dismutase 1 (mSOD1), contributes significantly to neuronal degeneration in ALS. Therapies targeting misfolded proteins represent a promising strategy. Baicalein, a flavonoid compound with neuroprotective properties, has shown efficacy in clearing misfolded proteins and improving behaviors in rodent models of Alzheimer's and Parkinson's diseases. However, its effects in ALS remain largely unexplored. This study demonstrated that baicalein treatment reduced total and misfolded SOD1 protein levels in both soluble and insoluble fractions of a motor neuron cell line overexpressing mutant SOD1. Baicalein also reduced intracellular SOD1 aggregates in cultured motor neurons transfected with <em>SOD1/G93A</em>, preserving neurite length. In an ALS mouse model expressing the <em>SOD1/G93A</em> transgene, baicalein treatment decreased mSOD1 aggregation, increased spinal motor neuron density, and reduced neuromuscular junction denervation. Furthermore, baicalein partially improved motor behaviors, as assessed by the rotarod test. These findings highlight baicalein's potential as a therapeutic agent for ALS, targeting intraneuronal misfolded proteins to ameliorate pathological changes and preserve motor function.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 8","pages":"Article 130831"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baicalein benefits amyotrophic lateral sclerosis via reduction of Intraneuronal misfolded protein\",\"authors\":\"Chen-Hung Ting , Shao-Ting Tai , Hsiang-Yu Chang , Po-Ya Huang , Lo-Fan Cheng , Hsing-Jung Lai , Yih-Chih Kuo , Chia-Hsin Kao , I-Fan Wang , Li-Kai Tsai\",\"doi\":\"10.1016/j.bbagen.2025.130831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterized by muscle weakness and atrophy, with limited treatment options. The accumulation of misfolded proteins, such as misfolded superoxide dismutase 1 (mSOD1), contributes significantly to neuronal degeneration in ALS. Therapies targeting misfolded proteins represent a promising strategy. Baicalein, a flavonoid compound with neuroprotective properties, has shown efficacy in clearing misfolded proteins and improving behaviors in rodent models of Alzheimer's and Parkinson's diseases. However, its effects in ALS remain largely unexplored. This study demonstrated that baicalein treatment reduced total and misfolded SOD1 protein levels in both soluble and insoluble fractions of a motor neuron cell line overexpressing mutant SOD1. Baicalein also reduced intracellular SOD1 aggregates in cultured motor neurons transfected with <em>SOD1/G93A</em>, preserving neurite length. In an ALS mouse model expressing the <em>SOD1/G93A</em> transgene, baicalein treatment decreased mSOD1 aggregation, increased spinal motor neuron density, and reduced neuromuscular junction denervation. Furthermore, baicalein partially improved motor behaviors, as assessed by the rotarod test. These findings highlight baicalein's potential as a therapeutic agent for ALS, targeting intraneuronal misfolded proteins to ameliorate pathological changes and preserve motor function.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 8\",\"pages\":\"Article 130831\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416525000765\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000765","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Baicalein benefits amyotrophic lateral sclerosis via reduction of Intraneuronal misfolded protein
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterized by muscle weakness and atrophy, with limited treatment options. The accumulation of misfolded proteins, such as misfolded superoxide dismutase 1 (mSOD1), contributes significantly to neuronal degeneration in ALS. Therapies targeting misfolded proteins represent a promising strategy. Baicalein, a flavonoid compound with neuroprotective properties, has shown efficacy in clearing misfolded proteins and improving behaviors in rodent models of Alzheimer's and Parkinson's diseases. However, its effects in ALS remain largely unexplored. This study demonstrated that baicalein treatment reduced total and misfolded SOD1 protein levels in both soluble and insoluble fractions of a motor neuron cell line overexpressing mutant SOD1. Baicalein also reduced intracellular SOD1 aggregates in cultured motor neurons transfected with SOD1/G93A, preserving neurite length. In an ALS mouse model expressing the SOD1/G93A transgene, baicalein treatment decreased mSOD1 aggregation, increased spinal motor neuron density, and reduced neuromuscular junction denervation. Furthermore, baicalein partially improved motor behaviors, as assessed by the rotarod test. These findings highlight baicalein's potential as a therapeutic agent for ALS, targeting intraneuronal misfolded proteins to ameliorate pathological changes and preserve motor function.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.