色氨酸强化海藻氧化铁纳米缀合物:对协同癌症治疗的潜在评价

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amy Sarah Benjamin , Sunita Nayak
{"title":"色氨酸强化海藻氧化铁纳米缀合物:对协同癌症治疗的潜在评价","authors":"Amy Sarah Benjamin ,&nbsp;Sunita Nayak","doi":"10.1016/j.bbagen.2025.130829","DOIUrl":null,"url":null,"abstract":"<div><div>The contribution of magnetic nanoparticles towards the diagnosis and therapy of cancer has seen an upward graph for the past decade owing to their excellent superparamagnetic properties and contrast imaging. The surface functionalization of these iron oxide nanoparticles plays a pivotal role in the toxicity, circulation, and agglomeration parameters of clinical translation. Natural-source-based sodium alginate is a very profound biomaterial used in all areas of tissue engineering. This paper aims to study the properties of alginate-coated iron oxide nanoparticles conjugated to the aromatic amino acid tryptophan for cancer targeting. The investigation involves fabrication of the conjugated nano-system followed by analysis of the physico-chemical properties using XRD and FT-IR, evaluation of its magnetic property using VSM which shows a good superparamagnetic behaviour, along with an excellent thermal stability as shown by TGA analysis. The hyperthermia activity of these particles shows a very good specific absorption rate followed by the antioxidant property of the nano-conjugate, which shows potential scavenging activity. The biocompatibility of these nanoparticles was studied on NIH-3T3 cell lines, which showed no toxic effects, thus making the nano-conjugate an efficient cancer-targeting and therapeutic agent for future cancer nanomedicine.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 8","pages":"Article 130829"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tryptophan enforced alg-iron oxide nanoconjugates: A potential evalution for synergistic cancer therapy\",\"authors\":\"Amy Sarah Benjamin ,&nbsp;Sunita Nayak\",\"doi\":\"10.1016/j.bbagen.2025.130829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The contribution of magnetic nanoparticles towards the diagnosis and therapy of cancer has seen an upward graph for the past decade owing to their excellent superparamagnetic properties and contrast imaging. The surface functionalization of these iron oxide nanoparticles plays a pivotal role in the toxicity, circulation, and agglomeration parameters of clinical translation. Natural-source-based sodium alginate is a very profound biomaterial used in all areas of tissue engineering. This paper aims to study the properties of alginate-coated iron oxide nanoparticles conjugated to the aromatic amino acid tryptophan for cancer targeting. The investigation involves fabrication of the conjugated nano-system followed by analysis of the physico-chemical properties using XRD and FT-IR, evaluation of its magnetic property using VSM which shows a good superparamagnetic behaviour, along with an excellent thermal stability as shown by TGA analysis. The hyperthermia activity of these particles shows a very good specific absorption rate followed by the antioxidant property of the nano-conjugate, which shows potential scavenging activity. The biocompatibility of these nanoparticles was studied on NIH-3T3 cell lines, which showed no toxic effects, thus making the nano-conjugate an efficient cancer-targeting and therapeutic agent for future cancer nanomedicine.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 8\",\"pages\":\"Article 130829\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416525000741\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000741","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磁性纳米颗粒对癌症诊断和治疗的贡献在过去十年中呈上升趋势,因为它们具有优异的超顺磁性和对比成像。这些氧化铁纳米颗粒的表面功能化在临床翻译的毒性、循环和团聚参数中起着关键作用。天然海藻酸钠是一种用途广泛的生物材料,广泛应用于组织工程的各个领域。本文旨在研究海藻酸盐包被的芳香氨基酸色氨酸共轭氧化铁纳米粒子的抗癌特性。研究包括共轭纳米体系的制备,随后使用XRD和FT-IR分析其物理化学性质,使用VSM评估其磁性能,显示出良好的超顺磁性行为,以及TGA分析显示的优异的热稳定性。这些颗粒的热疗活性显示出非常好的比吸收率,其次是纳米缀合物的抗氧化性能,显示出潜在的清除活性。在NIH-3T3细胞株上进行了生物相容性研究,结果表明纳米偶联物无毒性作用,是未来纳米肿瘤药物的有效靶向和治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tryptophan enforced alg-iron oxide nanoconjugates: A potential evalution for synergistic cancer therapy
The contribution of magnetic nanoparticles towards the diagnosis and therapy of cancer has seen an upward graph for the past decade owing to their excellent superparamagnetic properties and contrast imaging. The surface functionalization of these iron oxide nanoparticles plays a pivotal role in the toxicity, circulation, and agglomeration parameters of clinical translation. Natural-source-based sodium alginate is a very profound biomaterial used in all areas of tissue engineering. This paper aims to study the properties of alginate-coated iron oxide nanoparticles conjugated to the aromatic amino acid tryptophan for cancer targeting. The investigation involves fabrication of the conjugated nano-system followed by analysis of the physico-chemical properties using XRD and FT-IR, evaluation of its magnetic property using VSM which shows a good superparamagnetic behaviour, along with an excellent thermal stability as shown by TGA analysis. The hyperthermia activity of these particles shows a very good specific absorption rate followed by the antioxidant property of the nano-conjugate, which shows potential scavenging activity. The biocompatibility of these nanoparticles was studied on NIH-3T3 cell lines, which showed no toxic effects, thus making the nano-conjugate an efficient cancer-targeting and therapeutic agent for future cancer nanomedicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信