{"title":"Möbius波段上复向量场的奇异解","authors":"Renato A. Laguna, Sérgio Luís Zani","doi":"10.1016/j.jde.2025.113493","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> be the Möbius band, uniformized as <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>G</mi></math></span> where <em>G</em> is the automorphism group generated by the isometry <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mi>y</mi><mo>)</mo></math></span>. We show the existence of singular solutions <em>u</em> to the complex vector field<span><span><span><math><mi>L</mi><mo>≐</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>i</mi><mi>b</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>)</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo></math></span></span></span> where both <em>L</em> and <em>u</em> pass to the quotient. In other words, the passage of <em>L</em> to the Möbius band is not globally hypoelliptic. Some consequences for the question of whether non-orientable surfaces admit globally hypoelliptic vector fields are examined.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113493"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular solutions of complex vector fields on the Möbius band\",\"authors\":\"Renato A. Laguna, Sérgio Luís Zani\",\"doi\":\"10.1016/j.jde.2025.113493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>M</mi></math></span> be the Möbius band, uniformized as <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>G</mi></math></span> where <em>G</em> is the automorphism group generated by the isometry <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mi>y</mi><mo>)</mo></math></span>. We show the existence of singular solutions <em>u</em> to the complex vector field<span><span><span><math><mi>L</mi><mo>≐</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>i</mi><mi>b</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>)</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo></math></span></span></span> where both <em>L</em> and <em>u</em> pass to the quotient. In other words, the passage of <em>L</em> to the Möbius band is not globally hypoelliptic. Some consequences for the question of whether non-orientable surfaces admit globally hypoelliptic vector fields are examined.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"442 \",\"pages\":\"Article 113493\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005200\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005200","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Singular solutions of complex vector fields on the Möbius band
Let be the Möbius band, uniformized as where G is the automorphism group generated by the isometry . We show the existence of singular solutions u to the complex vector field where both L and u pass to the quotient. In other words, the passage of L to the Möbius band is not globally hypoelliptic. Some consequences for the question of whether non-orientable surfaces admit globally hypoelliptic vector fields are examined.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics