Möbius波段上复向量场的奇异解

IF 2.3 2区 数学 Q1 MATHEMATICS
Renato A. Laguna, Sérgio Luís Zani
{"title":"Möbius波段上复向量场的奇异解","authors":"Renato A. Laguna,&nbsp;Sérgio Luís Zani","doi":"10.1016/j.jde.2025.113493","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> be the Möbius band, uniformized as <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>G</mi></math></span> where <em>G</em> is the automorphism group generated by the isometry <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mi>y</mi><mo>)</mo></math></span>. We show the existence of singular solutions <em>u</em> to the complex vector field<span><span><span><math><mi>L</mi><mo>≐</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>i</mi><mi>b</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>)</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo></math></span></span></span> where both <em>L</em> and <em>u</em> pass to the quotient. In other words, the passage of <em>L</em> to the Möbius band is not globally hypoelliptic. Some consequences for the question of whether non-orientable surfaces admit globally hypoelliptic vector fields are examined.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113493"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular solutions of complex vector fields on the Möbius band\",\"authors\":\"Renato A. Laguna,&nbsp;Sérgio Luís Zani\",\"doi\":\"10.1016/j.jde.2025.113493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>M</mi></math></span> be the Möbius band, uniformized as <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>G</mi></math></span> where <em>G</em> is the automorphism group generated by the isometry <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mi>y</mi><mo>)</mo></math></span>. We show the existence of singular solutions <em>u</em> to the complex vector field<span><span><span><math><mi>L</mi><mo>≐</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>i</mi><mi>b</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>)</mo><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo></math></span></span></span> where both <em>L</em> and <em>u</em> pass to the quotient. In other words, the passage of <em>L</em> to the Möbius band is not globally hypoelliptic. Some consequences for the question of whether non-orientable surfaces admit globally hypoelliptic vector fields are examined.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"442 \",\"pages\":\"Article 113493\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005200\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005200","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M为Möbius波段,统一为R2/G,其中G为等距(x,y)∑(x+1,−y)生成的自同构群。我们证明了复向量场L½½∂∂x+y(a(x,y)+ b(x,y))∂∂y,a,b∈C∞(R2;R)的奇异解u的存在性,其中L和u都传递到商。换句话说,L到Möbius波段的通道不是全局的半椭圆。研究了非定向曲面是否存在全局准椭圆向量场问题的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular solutions of complex vector fields on the Möbius band
Let M be the Möbius band, uniformized as R2/G where G is the automorphism group generated by the isometry (x,y)(x+1,y). We show the existence of singular solutions u to the complex vector fieldLx+y(a(x,y)+ib(x,y))y,a,bC(R2;R) where both L and u pass to the quotient. In other words, the passage of L to the Möbius band is not globally hypoelliptic. Some consequences for the question of whether non-orientable surfaces admit globally hypoelliptic vector fields are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信