费米-狄拉克统计的弗拉索夫-泊松-玻尔兹曼系统的可压缩欧拉-泊松极限

IF 2.4 2区 数学 Q1 MATHEMATICS
Ning Jiang , Wengang Yang , Kai Zhou
{"title":"费米-狄拉克统计的弗拉索夫-泊松-玻尔兹曼系统的可压缩欧拉-泊松极限","authors":"Ning Jiang ,&nbsp;Wengang Yang ,&nbsp;Kai Zhou","doi":"10.1016/j.jde.2025.113499","DOIUrl":null,"url":null,"abstract":"<div><div>We justify the compressible Euler-Poisson limit of the quantum Vlasov-Poisson-Boltzmann equations with Fermi-Dirac statistics as the Knudsen number goes to zero. The truncated Hilbert expansion and the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mtext>-</mtext><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> framework are used to derive the validity of the hydrodynamic limits of the quantum Vlasov-Poisson-Boltzmann equations with hard sphere collision kernel. Due to the coupling effects of a self-consistent electric field, the extra <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msup></math></span> estimates for some new weighted function are necessary to close the energy.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113499"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compressible Euler-Poisson limit to the Vlasov-Poisson-Boltzmann system with Fermi-Dirac statistics\",\"authors\":\"Ning Jiang ,&nbsp;Wengang Yang ,&nbsp;Kai Zhou\",\"doi\":\"10.1016/j.jde.2025.113499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We justify the compressible Euler-Poisson limit of the quantum Vlasov-Poisson-Boltzmann equations with Fermi-Dirac statistics as the Knudsen number goes to zero. The truncated Hilbert expansion and the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mtext>-</mtext><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> framework are used to derive the validity of the hydrodynamic limits of the quantum Vlasov-Poisson-Boltzmann equations with hard sphere collision kernel. Due to the coupling effects of a self-consistent electric field, the extra <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msup></math></span> estimates for some new weighted function are necessary to close the energy.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"442 \",\"pages\":\"Article 113499\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005261\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005261","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当克努森数趋于零时,我们用费米-狄拉克统计证明了量子弗拉索夫-泊松-玻尔兹曼方程的可压缩欧拉-泊松极限。利用截断Hilbert展开和经典L2-L∞框架,推导了具有硬球碰撞核的量子Vlasov-Poisson-Boltzmann方程的水动力极限的有效性。由于自洽电场的耦合效应,一些新的加权函数需要额外的W1,∞估计来闭合能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The compressible Euler-Poisson limit to the Vlasov-Poisson-Boltzmann system with Fermi-Dirac statistics
We justify the compressible Euler-Poisson limit of the quantum Vlasov-Poisson-Boltzmann equations with Fermi-Dirac statistics as the Knudsen number goes to zero. The truncated Hilbert expansion and the classical L2-L framework are used to derive the validity of the hydrodynamic limits of the quantum Vlasov-Poisson-Boltzmann equations with hard sphere collision kernel. Due to the coupling effects of a self-consistent electric field, the extra W1, estimates for some new weighted function are necessary to close the energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信