短程Δ-Machine学习:将化学精度转移到凝聚相系统的成本效益策略

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Bence Balázs Mészáros, András Szabó and János Daru*, 
{"title":"短程Δ-Machine学习:将化学精度转移到凝聚相系统的成本效益策略","authors":"Bence Balázs Mészáros,&nbsp;András Szabó and János Daru*,&nbsp;","doi":"10.1021/acs.jctc.5c0036710.1021/acs.jctc.5c00367","DOIUrl":null,"url":null,"abstract":"<p >DFT-based machine-learning potentials (MLPs) are now routinely trained for condensed-phase systems, but surpassing DFT accuracy remains challenging due to the cost or unavailability of periodic reference calculations. Our previous work ( <cite><i>Phys. Rev. Lett.</i></cite> <span>2022</span>, <em>129</em>, 226001) demonstrated that high-accuracy periodic MLPs can be trained within the CCMD framework using extended yet finite reference calculations. Here, we introduce <i>short-range</i> Δ<i>-Machine Learning</i> (srΔML), a method that starts from a baseline MLP trained on low-level periodic data and adds a Δ-MLP correction based on high-level cluster calculations at the CC level. Applied to liquid water, srΔML reduces the required cluster size from (H<sub>2</sub>O)<sub>64</sub> to (H<sub>2</sub>O)<sub>15</sub> and significantly lowers the number of clusters needed, resulting in a 50–200× reduction in computational cost. The resulting potential closely reproduces the target CC potential and accurately captures both two- and three-body structural descriptors.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 11","pages":"5372–5381 5372–5381"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Range Δ-Machine Learning: A Cost-Efficient Strategy to Transfer Chemical Accuracy to Condensed Phase Systems\",\"authors\":\"Bence Balázs Mészáros,&nbsp;András Szabó and János Daru*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.5c0036710.1021/acs.jctc.5c00367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >DFT-based machine-learning potentials (MLPs) are now routinely trained for condensed-phase systems, but surpassing DFT accuracy remains challenging due to the cost or unavailability of periodic reference calculations. Our previous work ( <cite><i>Phys. Rev. Lett.</i></cite> <span>2022</span>, <em>129</em>, 226001) demonstrated that high-accuracy periodic MLPs can be trained within the CCMD framework using extended yet finite reference calculations. Here, we introduce <i>short-range</i> Δ<i>-Machine Learning</i> (srΔML), a method that starts from a baseline MLP trained on low-level periodic data and adds a Δ-MLP correction based on high-level cluster calculations at the CC level. Applied to liquid water, srΔML reduces the required cluster size from (H<sub>2</sub>O)<sub>64</sub> to (H<sub>2</sub>O)<sub>15</sub> and significantly lowers the number of clusters needed, resulting in a 50–200× reduction in computational cost. The resulting potential closely reproduces the target CC potential and accurately captures both two- and three-body structural descriptors.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"21 11\",\"pages\":\"5372–5381 5372–5381\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00367\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00367","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于DFT的机器学习潜力(mlp)现在通常用于凝聚相系统的训练,但由于成本或不可用的周期性参考计算,超越DFT精度仍然具有挑战性。我们以前的工作(物理学)。Rev. Lett. 2022, 129, 226001)证明了高精度的周期性mlp可以在CCMD框架内使用扩展但有限的参考计算进行训练。在这里,我们引入了短程Δ-Machine学习(srΔML),这是一种从在低级周期性数据上训练的基线MLP开始的方法,并在CC级别上基于高级聚类计算添加Δ-MLP校正。应用于液态水,srΔML将所需的簇大小从(H2O)64减少到(H2O)15,并显着降低了所需的簇数量,从而使计算成本降低了50 - 200倍。所得电位近似再现目标CC电位,并准确捕获两体和三体结构描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Range Δ-Machine Learning: A Cost-Efficient Strategy to Transfer Chemical Accuracy to Condensed Phase Systems

DFT-based machine-learning potentials (MLPs) are now routinely trained for condensed-phase systems, but surpassing DFT accuracy remains challenging due to the cost or unavailability of periodic reference calculations. Our previous work ( Phys. Rev. Lett. 2022, 129, 226001) demonstrated that high-accuracy periodic MLPs can be trained within the CCMD framework using extended yet finite reference calculations. Here, we introduce short-range Δ-Machine Learning (srΔML), a method that starts from a baseline MLP trained on low-level periodic data and adds a Δ-MLP correction based on high-level cluster calculations at the CC level. Applied to liquid water, srΔML reduces the required cluster size from (H2O)64 to (H2O)15 and significantly lowers the number of clusters needed, resulting in a 50–200× reduction in computational cost. The resulting potential closely reproduces the target CC potential and accurately captures both two- and three-body structural descriptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信