无溶剂机械化学析氧法合成高效镍层双氢氧化物电催化剂

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Manuel Molina-Muriel, Sabrina Campagna Zignani, Sara Goberna-Ferrón*, Antonio Ribera, Antonino Salvatore Aricò* and Hermenegildo García*, 
{"title":"无溶剂机械化学析氧法合成高效镍层双氢氧化物电催化剂","authors":"Manuel Molina-Muriel,&nbsp;Sabrina Campagna Zignani,&nbsp;Sara Goberna-Ferrón*,&nbsp;Antonio Ribera,&nbsp;Antonino Salvatore Aricò* and Hermenegildo García*,&nbsp;","doi":"10.1021/acsomega.4c1111510.1021/acsomega.4c11115","DOIUrl":null,"url":null,"abstract":"<p >The growing concern over climate change and the reliance on fossil fuels has spurred interest in alternative energy processes, particularly electrochemical water splitting to produce hydrogen (H<sub>2</sub>). This study focuses on developing cost-effective and efficient oxygen evolution reaction (OER) electrocatalysts. We report a novel solvent-free mechanochemical method for synthesizing NiFe-layered double hydroxide (LDH), which demonstrates promising electrocatalytic properties for the OER. The mechanochemical synthesis, requiring only 1 h of solid reagent grinding, produces NiFe-LDH with structural features comparable to those obtained via traditional aqueous phase methods. The electrocatalyst was evaluated in a single cell with a membrane-electrode assembly configuration under alkaline conditions, exhibiting an overpotential of 221 mV at a current density of 10 mA·cm<sup>–2</sup> and a Tafel slope of 103.1 mV·dec<sup>–1</sup>, indicating excellent OER kinetics and low energy barriers. Additionally, the catalyst demonstrated robust durability, maintaining a potential of around 1.55 V during a 35 h test at high current densities of 0.1 A·cm<sup>–2</sup> and even 1.75 V at 1 A·cm<sup>–2</sup>. This work highlights the potential of NiFe-LDH synthesized by an energy-efficient, environmentally green, and scalable process for large industrial water-splitting applications, contributing to the advancement of sustainable hydrogen production technologies.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 22","pages":"22671–22678 22671–22678"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11115","citationCount":"0","resultStr":"{\"title\":\"Efficient NiFe-Layered Double Hydroxide Electrocatalyst Synthesized via a Solvent-Free Mechanochemical Method for Oxygen Evolution Reaction\",\"authors\":\"Manuel Molina-Muriel,&nbsp;Sabrina Campagna Zignani,&nbsp;Sara Goberna-Ferrón*,&nbsp;Antonio Ribera,&nbsp;Antonino Salvatore Aricò* and Hermenegildo García*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c1111510.1021/acsomega.4c11115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The growing concern over climate change and the reliance on fossil fuels has spurred interest in alternative energy processes, particularly electrochemical water splitting to produce hydrogen (H<sub>2</sub>). This study focuses on developing cost-effective and efficient oxygen evolution reaction (OER) electrocatalysts. We report a novel solvent-free mechanochemical method for synthesizing NiFe-layered double hydroxide (LDH), which demonstrates promising electrocatalytic properties for the OER. The mechanochemical synthesis, requiring only 1 h of solid reagent grinding, produces NiFe-LDH with structural features comparable to those obtained via traditional aqueous phase methods. The electrocatalyst was evaluated in a single cell with a membrane-electrode assembly configuration under alkaline conditions, exhibiting an overpotential of 221 mV at a current density of 10 mA·cm<sup>–2</sup> and a Tafel slope of 103.1 mV·dec<sup>–1</sup>, indicating excellent OER kinetics and low energy barriers. Additionally, the catalyst demonstrated robust durability, maintaining a potential of around 1.55 V during a 35 h test at high current densities of 0.1 A·cm<sup>–2</sup> and even 1.75 V at 1 A·cm<sup>–2</sup>. This work highlights the potential of NiFe-LDH synthesized by an energy-efficient, environmentally green, and scalable process for large industrial water-splitting applications, contributing to the advancement of sustainable hydrogen production technologies.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 22\",\"pages\":\"22671–22678 22671–22678\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11115\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c11115\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c11115","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对气候变化的日益关注和对化石燃料的依赖激发了人们对替代能源工艺的兴趣,特别是电化学水分解制氢(H2)。本研究旨在开发经济高效的析氧反应(OER)电催化剂。我们报道了一种新的无溶剂机械化学方法来合成nife层状双氢氧化物(LDH),该方法在OER中具有良好的电催化性能。机械化学合成只需要1小时的固体试剂研磨,就可以生产出具有与传统水相方法相当的结构特征的NiFe-LDH。在碱性条件下,该电催化剂在膜-电极组合配置的单个电池中进行了评估,在电流密度为10 mA·cm-2时,其过电位为221 mV, Tafel斜率为103.1 mV·dec1,表明其具有良好的OER动力学和低能垒。此外,该催化剂表现出强大的耐久性,在35小时的测试中,在0.1 a·cm-2的高电流密度下保持约1.55 V的电位,在1 a·cm-2的高电流密度下甚至保持1.75 V的电位。这项工作强调了通过节能、环保、可扩展的工艺合成NiFe-LDH的潜力,可用于大型工业水分解应用,为可持续制氢技术的进步做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient NiFe-Layered Double Hydroxide Electrocatalyst Synthesized via a Solvent-Free Mechanochemical Method for Oxygen Evolution Reaction

The growing concern over climate change and the reliance on fossil fuels has spurred interest in alternative energy processes, particularly electrochemical water splitting to produce hydrogen (H2). This study focuses on developing cost-effective and efficient oxygen evolution reaction (OER) electrocatalysts. We report a novel solvent-free mechanochemical method for synthesizing NiFe-layered double hydroxide (LDH), which demonstrates promising electrocatalytic properties for the OER. The mechanochemical synthesis, requiring only 1 h of solid reagent grinding, produces NiFe-LDH with structural features comparable to those obtained via traditional aqueous phase methods. The electrocatalyst was evaluated in a single cell with a membrane-electrode assembly configuration under alkaline conditions, exhibiting an overpotential of 221 mV at a current density of 10 mA·cm–2 and a Tafel slope of 103.1 mV·dec–1, indicating excellent OER kinetics and low energy barriers. Additionally, the catalyst demonstrated robust durability, maintaining a potential of around 1.55 V during a 35 h test at high current densities of 0.1 A·cm–2 and even 1.75 V at 1 A·cm–2. This work highlights the potential of NiFe-LDH synthesized by an energy-efficient, environmentally green, and scalable process for large industrial water-splitting applications, contributing to the advancement of sustainable hydrogen production technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信