磁性纳米颗粒对类蛋白电脉冲活性的调节

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Panagiotis Mougkogiannis*,  and , Andrew Adamatzky, 
{"title":"磁性纳米颗粒对类蛋白电脉冲活性的调节","authors":"Panagiotis Mougkogiannis*,&nbsp; and ,&nbsp;Andrew Adamatzky,&nbsp;","doi":"10.1021/acs.langmuir.5c0093210.1021/acs.langmuir.5c00932","DOIUrl":null,"url":null,"abstract":"<p >This study looks at how proteinoid microspheres and their magnetic polystyrene (PS) hybrids behave electrochemically. It also explores their computational abilities. These systems show complex membrane potential dynamics. Pure proteinoids spike without external influence, ranging from 5.39 to 9.81 mV. In contrast, PS-modified variants exhibit sinusoidal oscillations. Their behavior can be described by the equation <i>V</i>(<i>t</i>) = <i>A</i> sin(2π<i>ft</i>) + <i>V</i><sub>offset</sub>, where <i>A</i> is about 1.5 mV and <i>f</i> is around 0.05 Hz. Electrochemical impedance spectroscopy shows key differences in charge transport. The PS-modified systems have better conductivity: |<i>Z</i>|<sub>PS</sub> = 7.22 × 10<sup>4</sup> Ω compared to |<i>Z</i>|<sub>prot</sub> = 2.03 × 10<sup>5</sup> Ω. The systems can perform Boolean logic operations with a 5 mV threshold. They show time-dependent gate behavior, making them suitable for unconventional computing applications. Doping with Fe(NO<sub>3</sub>)<sub>3</sub> changes the electrical response. This happens through redox processes where Fe<sup>3+</sup> gains an electron to become Fe<sup>2+</sup>. As a result, there are greater potential differences and more complex timing behaviors. These findings help us understand proteinoid-based bioelectricity better. They also show how these building blocks can be used in biomolecular computing systems.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 22","pages":"13974–13992 13974–13992"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.5c00932","citationCount":"0","resultStr":"{\"title\":\"Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles\",\"authors\":\"Panagiotis Mougkogiannis*,&nbsp; and ,&nbsp;Andrew Adamatzky,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c0093210.1021/acs.langmuir.5c00932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study looks at how proteinoid microspheres and their magnetic polystyrene (PS) hybrids behave electrochemically. It also explores their computational abilities. These systems show complex membrane potential dynamics. Pure proteinoids spike without external influence, ranging from 5.39 to 9.81 mV. In contrast, PS-modified variants exhibit sinusoidal oscillations. Their behavior can be described by the equation <i>V</i>(<i>t</i>) = <i>A</i> sin(2π<i>ft</i>) + <i>V</i><sub>offset</sub>, where <i>A</i> is about 1.5 mV and <i>f</i> is around 0.05 Hz. Electrochemical impedance spectroscopy shows key differences in charge transport. The PS-modified systems have better conductivity: |<i>Z</i>|<sub>PS</sub> = 7.22 × 10<sup>4</sup> Ω compared to |<i>Z</i>|<sub>prot</sub> = 2.03 × 10<sup>5</sup> Ω. The systems can perform Boolean logic operations with a 5 mV threshold. They show time-dependent gate behavior, making them suitable for unconventional computing applications. Doping with Fe(NO<sub>3</sub>)<sub>3</sub> changes the electrical response. This happens through redox processes where Fe<sup>3+</sup> gains an electron to become Fe<sup>2+</sup>. As a result, there are greater potential differences and more complex timing behaviors. These findings help us understand proteinoid-based bioelectricity better. They also show how these building blocks can be used in biomolecular computing systems.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 22\",\"pages\":\"13974–13992 13974–13992\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.5c00932\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00932\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00932","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究着眼于类蛋白微球及其磁性聚苯乙烯(PS)杂化体的电化学行为。它还探索了他们的计算能力。这些系统表现出复杂的膜电位动力学。纯类蛋白在没有外界影响的情况下产生峰值,峰值范围在5.39 ~ 9.81 mV之间。相反,ps修饰的变体表现为正弦振荡。它们的行为可以用方程V(t) = A sin(2πft) + Voffset来描述,其中A约为1.5 mV, f约为0.05 Hz。电化学阻抗谱显示了电荷输运的关键差异。PS改性体系具有更好的导电性:|Z|PS = 7.22 × 104 Ω相比|Z|prot = 2.03 × 105 Ω。该系统可以执行5 mV阈值的布尔逻辑运算。它们表现出与时间相关的栅极行为,使它们适合于非常规的计算应用。Fe(NO3)3的掺杂改变了电响应。这是通过氧化还原过程发生的,其中Fe3+获得一个电子变成Fe2+。因此,存在更大的潜在差异和更复杂的时序行为。这些发现有助于我们更好地理解基于蛋白质的生物电。他们还展示了如何在生物分子计算系统中使用这些构建模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles

This study looks at how proteinoid microspheres and their magnetic polystyrene (PS) hybrids behave electrochemically. It also explores their computational abilities. These systems show complex membrane potential dynamics. Pure proteinoids spike without external influence, ranging from 5.39 to 9.81 mV. In contrast, PS-modified variants exhibit sinusoidal oscillations. Their behavior can be described by the equation V(t) = A sin(2πft) + Voffset, where A is about 1.5 mV and f is around 0.05 Hz. Electrochemical impedance spectroscopy shows key differences in charge transport. The PS-modified systems have better conductivity: |Z|PS = 7.22 × 104 Ω compared to |Z|prot = 2.03 × 105 Ω. The systems can perform Boolean logic operations with a 5 mV threshold. They show time-dependent gate behavior, making them suitable for unconventional computing applications. Doping with Fe(NO3)3 changes the electrical response. This happens through redox processes where Fe3+ gains an electron to become Fe2+. As a result, there are greater potential differences and more complex timing behaviors. These findings help us understand proteinoid-based bioelectricity better. They also show how these building blocks can be used in biomolecular computing systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信