利用先进的热分析方法探索Sb2Se3的热稳定性及其潜在应用

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gozde Altuntas, Mehmet Isik, Gokhan Surucu*, Mehmet Parlak and Ozge Surucu, 
{"title":"利用先进的热分析方法探索Sb2Se3的热稳定性及其潜在应用","authors":"Gozde Altuntas,&nbsp;Mehmet Isik,&nbsp;Gokhan Surucu*,&nbsp;Mehmet Parlak and Ozge Surucu,&nbsp;","doi":"10.1021/acsomega.4c1005310.1021/acsomega.4c10053","DOIUrl":null,"url":null,"abstract":"<p >Antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) is a promising material for energy applications, including photovoltaics, thermoelectrics, and photodetectors, due to its favorable electronic properties, availability, and low toxicity. However, its thermal stability, crucial for device efficiency and reliability, has been less explored, leaving a gap in understanding its high-temperature suitability. This study evaluates the thermal stability of Sb<sub>2</sub>Se<sub>3</sub> using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results show that Sb<sub>2</sub>Se<sub>3</sub> remains stable up to 500 °C, with two significant weight loss stages: 1.75% between 500 and 610 °C, and 3.50% between 610 and 775 °C, indicating decomposition processes. Activation energies for the decomposition phases were determined as 121.8 and 57.2 kJ/mol using the Coats–Redfern method. Additionally, an endothermic phase transition was observed between 599 and 630.6 °C via DSC analysis. These findings demonstrate Sb<sub>2</sub>Se<sub>3</sub>’s potential for high-temperature energy applications, providing essential insights for optimizing its use in solar cells, thermoelectric devices, and other technologies.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 22","pages":"22585–22592 22585–22592"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10053","citationCount":"0","resultStr":"{\"title\":\"Exploring the Thermal Stability of Sb2Se3 for Potential Applications through Advanced Thermal Analysis Methods\",\"authors\":\"Gozde Altuntas,&nbsp;Mehmet Isik,&nbsp;Gokhan Surucu*,&nbsp;Mehmet Parlak and Ozge Surucu,&nbsp;\",\"doi\":\"10.1021/acsomega.4c1005310.1021/acsomega.4c10053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) is a promising material for energy applications, including photovoltaics, thermoelectrics, and photodetectors, due to its favorable electronic properties, availability, and low toxicity. However, its thermal stability, crucial for device efficiency and reliability, has been less explored, leaving a gap in understanding its high-temperature suitability. This study evaluates the thermal stability of Sb<sub>2</sub>Se<sub>3</sub> using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results show that Sb<sub>2</sub>Se<sub>3</sub> remains stable up to 500 °C, with two significant weight loss stages: 1.75% between 500 and 610 °C, and 3.50% between 610 and 775 °C, indicating decomposition processes. Activation energies for the decomposition phases were determined as 121.8 and 57.2 kJ/mol using the Coats–Redfern method. Additionally, an endothermic phase transition was observed between 599 and 630.6 °C via DSC analysis. These findings demonstrate Sb<sub>2</sub>Se<sub>3</sub>’s potential for high-temperature energy applications, providing essential insights for optimizing its use in solar cells, thermoelectric devices, and other technologies.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 22\",\"pages\":\"22585–22592 22585–22592\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c10053\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c10053","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硒化锑(Sb2Se3)由于其良好的电子性能、可用性和低毒性,是一种很有前途的能源应用材料,包括光伏、热电和光电探测器。然而,对于器件效率和可靠性至关重要的热稳定性的研究却很少,这使得人们对其高温适用性的理解存在空白。本研究采用热重分析(TGA)、差热分析(DTA)和差示扫描量热法(DSC)对Sb2Se3的热稳定性进行了评价。结果表明,Sb2Se3在500℃以内保持稳定,在500 ~ 610℃之间出现了1.75%的失重阶段,在610 ~ 775℃之间出现了3.50%的失重阶段,表明存在分解过程。用Coats-Redfern法测定了两相的活化能分别为121.8和57.2 kJ/mol。此外,通过DSC分析,在599 ~ 630.6°C之间观察到吸热相变。这些发现证明了Sb2Se3在高温能源应用方面的潜力,为优化其在太阳能电池、热电器件和其他技术中的应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Thermal Stability of Sb2Se3 for Potential Applications through Advanced Thermal Analysis Methods

Antimony selenide (Sb2Se3) is a promising material for energy applications, including photovoltaics, thermoelectrics, and photodetectors, due to its favorable electronic properties, availability, and low toxicity. However, its thermal stability, crucial for device efficiency and reliability, has been less explored, leaving a gap in understanding its high-temperature suitability. This study evaluates the thermal stability of Sb2Se3 using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results show that Sb2Se3 remains stable up to 500 °C, with two significant weight loss stages: 1.75% between 500 and 610 °C, and 3.50% between 610 and 775 °C, indicating decomposition processes. Activation energies for the decomposition phases were determined as 121.8 and 57.2 kJ/mol using the Coats–Redfern method. Additionally, an endothermic phase transition was observed between 599 and 630.6 °C via DSC analysis. These findings demonstrate Sb2Se3’s potential for high-temperature energy applications, providing essential insights for optimizing its use in solar cells, thermoelectric devices, and other technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信