医用不锈钢表面耐蚀性良好的ZnO/聚多巴胺/ε-聚赖氨酸涂层及联合抗菌通道的制备

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jinglin Zhang*, Shuoyan Jiang, Huidi Liu, Zengxi Wang, Xiang Cai and Shaozao Tan*, 
{"title":"医用不锈钢表面耐蚀性良好的ZnO/聚多巴胺/ε-聚赖氨酸涂层及联合抗菌通道的制备","authors":"Jinglin Zhang*,&nbsp;Shuoyan Jiang,&nbsp;Huidi Liu,&nbsp;Zengxi Wang,&nbsp;Xiang Cai and Shaozao Tan*,&nbsp;","doi":"10.1021/acsbiomaterials.5c0008710.1021/acsbiomaterials.5c00087","DOIUrl":null,"url":null,"abstract":"<p >Medical stainless steel (SS) is a widely used alloy in orthopedic and dental implant applications. However, SS can cause local corrosion in the body, which may affect cell proliferation and differentiation, and is prone to related bacterial infection. Therefore, surface modification is required to improve the corrosion resistance and antibacterial performance of SS to extend its service life. To achieve this goal, a new type of composite coating was established on the surface of SS. First, zinc oxide (ZnO) nanoparticles were deposited on the surface of SS by electrochemical deposition. Then, polydopamine (PDA) was formed through the self-polymerization of dopamine. Finally, the Michael addition reaction between ε-polylysine (ε-PL) and PDA was used to chemically graft a cationic antimicrobial peptide (AMP), namely, ε-PL, constructing a corrosion-resistant and antibacterial ZnO/PDA/ε-PL coating on the surface of the SS (SZP/ε-PL). The results indicated that the obtained composite coating could significantly improve the corrosion resistance of SS because of the introduction of ZnO. After being irradiated with near-infrared (NIR) light (wavelength: 1064 nm, power: 1 W/cm<sup>2</sup>) for 8 min, the temperature of SZP/ε-PL increased from 22.4 to 57.8 °C. Moreover, there was no significant temperature decay after four cycles, which indicated the good photothermal performance and stability of SZP/ε-PL owing to the function of PDA. Combining photothermal sterilization and AMP contact sterilization, the antibacterial rates of SZP/ε-PL against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> both reached nearly 100%. In addition, SZP/ε-PL has excellent blood compatibility. With the above advantages, SZP/ε-PL was expected to become a safe and efficient implant material.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3351–3363 3351–3363"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a ZnO/Polydopamine/ε-Polylysine Coating with Good Corrosion Resistance and a Joint Antibacterial Pathway on the Surface of Medical Stainless Steel\",\"authors\":\"Jinglin Zhang*,&nbsp;Shuoyan Jiang,&nbsp;Huidi Liu,&nbsp;Zengxi Wang,&nbsp;Xiang Cai and Shaozao Tan*,&nbsp;\",\"doi\":\"10.1021/acsbiomaterials.5c0008710.1021/acsbiomaterials.5c00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Medical stainless steel (SS) is a widely used alloy in orthopedic and dental implant applications. However, SS can cause local corrosion in the body, which may affect cell proliferation and differentiation, and is prone to related bacterial infection. Therefore, surface modification is required to improve the corrosion resistance and antibacterial performance of SS to extend its service life. To achieve this goal, a new type of composite coating was established on the surface of SS. First, zinc oxide (ZnO) nanoparticles were deposited on the surface of SS by electrochemical deposition. Then, polydopamine (PDA) was formed through the self-polymerization of dopamine. Finally, the Michael addition reaction between ε-polylysine (ε-PL) and PDA was used to chemically graft a cationic antimicrobial peptide (AMP), namely, ε-PL, constructing a corrosion-resistant and antibacterial ZnO/PDA/ε-PL coating on the surface of the SS (SZP/ε-PL). The results indicated that the obtained composite coating could significantly improve the corrosion resistance of SS because of the introduction of ZnO. After being irradiated with near-infrared (NIR) light (wavelength: 1064 nm, power: 1 W/cm<sup>2</sup>) for 8 min, the temperature of SZP/ε-PL increased from 22.4 to 57.8 °C. Moreover, there was no significant temperature decay after four cycles, which indicated the good photothermal performance and stability of SZP/ε-PL owing to the function of PDA. Combining photothermal sterilization and AMP contact sterilization, the antibacterial rates of SZP/ε-PL against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> both reached nearly 100%. In addition, SZP/ε-PL has excellent blood compatibility. With the above advantages, SZP/ε-PL was expected to become a safe and efficient implant material.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 6\",\"pages\":\"3351–3363 3351–3363\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00087\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00087","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

医用不锈钢(SS)是一种广泛应用于骨科和牙科种植应用的合金。但SS可引起机体局部腐蚀,影响细胞增殖和分化,易发生相关细菌感染。因此,需要对SS进行表面改性,以提高其耐腐蚀性和抗菌性能,延长其使用寿命。为了实现这一目标,在SS表面建立了一种新型的复合涂层。首先,通过电化学沉积在SS表面沉积氧化锌纳米颗粒。然后,通过多巴胺的自聚合形成聚多巴胺(PDA)。最后,利用ε-聚赖氨酸(ε-PL)与PDA之间的Michael加成反应,化学接枝阳离子抗菌肽(AMP) ε-PL,在SS (SZP/ε-PL)表面构建耐腐蚀、抗菌的ZnO/PDA/ε-PL涂层。结果表明,由于ZnO的引入,所制备的复合涂层可以显著提高SS的耐蚀性。近红外(NIR)光(波长:1064 nm,功率:1 W/cm2)照射8 min后,SZP/ε-PL的温度由22.4℃升高到57.8℃。经过4次循环后,没有明显的温度衰减,表明SZP/ε-PL具有良好的光热性能和稳定性,这是由于PDA的作用。结合光热灭菌和AMP接触灭菌,SZP/ε-PL对大肠杆菌和金黄色葡萄球菌的抑菌率均接近100%。此外,SZP/ε-PL具有优良的血液相容性。SZP/ε-PL具有以上优点,有望成为一种安全高效的植入材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of a ZnO/Polydopamine/ε-Polylysine Coating with Good Corrosion Resistance and a Joint Antibacterial Pathway on the Surface of Medical Stainless Steel

Medical stainless steel (SS) is a widely used alloy in orthopedic and dental implant applications. However, SS can cause local corrosion in the body, which may affect cell proliferation and differentiation, and is prone to related bacterial infection. Therefore, surface modification is required to improve the corrosion resistance and antibacterial performance of SS to extend its service life. To achieve this goal, a new type of composite coating was established on the surface of SS. First, zinc oxide (ZnO) nanoparticles were deposited on the surface of SS by electrochemical deposition. Then, polydopamine (PDA) was formed through the self-polymerization of dopamine. Finally, the Michael addition reaction between ε-polylysine (ε-PL) and PDA was used to chemically graft a cationic antimicrobial peptide (AMP), namely, ε-PL, constructing a corrosion-resistant and antibacterial ZnO/PDA/ε-PL coating on the surface of the SS (SZP/ε-PL). The results indicated that the obtained composite coating could significantly improve the corrosion resistance of SS because of the introduction of ZnO. After being irradiated with near-infrared (NIR) light (wavelength: 1064 nm, power: 1 W/cm2) for 8 min, the temperature of SZP/ε-PL increased from 22.4 to 57.8 °C. Moreover, there was no significant temperature decay after four cycles, which indicated the good photothermal performance and stability of SZP/ε-PL owing to the function of PDA. Combining photothermal sterilization and AMP contact sterilization, the antibacterial rates of SZP/ε-PL against Escherichia coli and Staphylococcus aureus both reached nearly 100%. In addition, SZP/ε-PL has excellent blood compatibility. With the above advantages, SZP/ε-PL was expected to become a safe and efficient implant material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信