Nael Berri, Sandhya Moise, Antonios Keirouz, Andrew Jennings, Bernardo Castro-Dominguez and Hannah S. Leese*,
{"title":"通过绿色静电纺丝将实验室塑料转化为功能性纤维支架用于细胞培养和组织工程应用","authors":"Nael Berri, Sandhya Moise, Antonios Keirouz, Andrew Jennings, Bernardo Castro-Dominguez and Hannah S. Leese*, ","doi":"10.1021/acsbiomaterials.5c0014610.1021/acsbiomaterials.5c00146","DOIUrl":null,"url":null,"abstract":"<p >Cell culture for tissue engineering is a global and flexible research method that relies heavily on plastic consumables, which generates millions of tons of plastic waste annually. Here, we develop an innovative sustainable method for scaffold production by repurposing spent tissue culture polystyrene into biocompatible microfiber scaffolds, while using environmentally friendly solvents. Our new green electrospinning approach utilizes two green, biodegradable and low-toxicity solvents, dihydrolevoglucosenone (Cyrene) and dimethyl carbonate (DMC) to process laboratory cell culture petri dishes into polymer dopes for electrospinning. Scaffolds produced from these spinning dopes, produced both aligned and non-aligned microfiber configurations, were examined in detail. The scaffolds exhibited mechanical properties comparable to cancellous bones whereby aligned scaffolds achieved an ultimate tensile strength (UTS) of 4.58 ± 0.34 MPa and a Young’s modulus of 11.87 ± 0.54 MPa, while the non-aligned scaffolds exhibited a UTS of 4.27 ± 0.92 MPa and a Young’s modulus of 20.37 ± 4.85. To evaluate their potential for cell-culture, MG63 osteoblast-like cells were seeded onto aligned and non-aligned scaffolds to assess their biocompatibility, cell adhesion, and differentiation, where the cell viability, DNA content, and proliferation were monitored over 14 days. DNA quantification demonstrated an eight-fold increase from 0.195 μg/mL (day 1) to 1.55 μg/mL (day 14), with a significant rise in cell metabolic activity over 7 days, and no observed cytotoxic effects. Confocal microscopy revealed elongated cell alignment on aligned fiber scaffolds, while rounded, disoriented cells were observed on non-aligned fiber scaffolds. Alizarin Red staining and calcium quantification confirmed osteogenic differentiation, as evidenced by mineral deposition on the scaffolds. This research therefore demonstrates the feasibility of this new method to repurpose laboratory polystyrene waste into sustainable cell culture tissue engineering scaffolds using eco-friendly solvents. Such an approach provides a route for cell culture for tissue engineering related activities to transition towards more sustainable and environmentally conscious scientific practices, thereby aligning with the principles of a circular economy.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3573–3585 3573–3585"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.5c00146","citationCount":"0","resultStr":"{\"title\":\"Repurposing Laboratory Plastic into Functional Fibrous Scaffolds via Green Electrospinning for Cell Culture and Tissue Engineering Applications\",\"authors\":\"Nael Berri, Sandhya Moise, Antonios Keirouz, Andrew Jennings, Bernardo Castro-Dominguez and Hannah S. Leese*, \",\"doi\":\"10.1021/acsbiomaterials.5c0014610.1021/acsbiomaterials.5c00146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cell culture for tissue engineering is a global and flexible research method that relies heavily on plastic consumables, which generates millions of tons of plastic waste annually. Here, we develop an innovative sustainable method for scaffold production by repurposing spent tissue culture polystyrene into biocompatible microfiber scaffolds, while using environmentally friendly solvents. Our new green electrospinning approach utilizes two green, biodegradable and low-toxicity solvents, dihydrolevoglucosenone (Cyrene) and dimethyl carbonate (DMC) to process laboratory cell culture petri dishes into polymer dopes for electrospinning. Scaffolds produced from these spinning dopes, produced both aligned and non-aligned microfiber configurations, were examined in detail. The scaffolds exhibited mechanical properties comparable to cancellous bones whereby aligned scaffolds achieved an ultimate tensile strength (UTS) of 4.58 ± 0.34 MPa and a Young’s modulus of 11.87 ± 0.54 MPa, while the non-aligned scaffolds exhibited a UTS of 4.27 ± 0.92 MPa and a Young’s modulus of 20.37 ± 4.85. To evaluate their potential for cell-culture, MG63 osteoblast-like cells were seeded onto aligned and non-aligned scaffolds to assess their biocompatibility, cell adhesion, and differentiation, where the cell viability, DNA content, and proliferation were monitored over 14 days. DNA quantification demonstrated an eight-fold increase from 0.195 μg/mL (day 1) to 1.55 μg/mL (day 14), with a significant rise in cell metabolic activity over 7 days, and no observed cytotoxic effects. Confocal microscopy revealed elongated cell alignment on aligned fiber scaffolds, while rounded, disoriented cells were observed on non-aligned fiber scaffolds. Alizarin Red staining and calcium quantification confirmed osteogenic differentiation, as evidenced by mineral deposition on the scaffolds. This research therefore demonstrates the feasibility of this new method to repurpose laboratory polystyrene waste into sustainable cell culture tissue engineering scaffolds using eco-friendly solvents. Such an approach provides a route for cell culture for tissue engineering related activities to transition towards more sustainable and environmentally conscious scientific practices, thereby aligning with the principles of a circular economy.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 6\",\"pages\":\"3573–3585 3573–3585\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.5c00146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00146\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Repurposing Laboratory Plastic into Functional Fibrous Scaffolds via Green Electrospinning for Cell Culture and Tissue Engineering Applications
Cell culture for tissue engineering is a global and flexible research method that relies heavily on plastic consumables, which generates millions of tons of plastic waste annually. Here, we develop an innovative sustainable method for scaffold production by repurposing spent tissue culture polystyrene into biocompatible microfiber scaffolds, while using environmentally friendly solvents. Our new green electrospinning approach utilizes two green, biodegradable and low-toxicity solvents, dihydrolevoglucosenone (Cyrene) and dimethyl carbonate (DMC) to process laboratory cell culture petri dishes into polymer dopes for electrospinning. Scaffolds produced from these spinning dopes, produced both aligned and non-aligned microfiber configurations, were examined in detail. The scaffolds exhibited mechanical properties comparable to cancellous bones whereby aligned scaffolds achieved an ultimate tensile strength (UTS) of 4.58 ± 0.34 MPa and a Young’s modulus of 11.87 ± 0.54 MPa, while the non-aligned scaffolds exhibited a UTS of 4.27 ± 0.92 MPa and a Young’s modulus of 20.37 ± 4.85. To evaluate their potential for cell-culture, MG63 osteoblast-like cells were seeded onto aligned and non-aligned scaffolds to assess their biocompatibility, cell adhesion, and differentiation, where the cell viability, DNA content, and proliferation were monitored over 14 days. DNA quantification demonstrated an eight-fold increase from 0.195 μg/mL (day 1) to 1.55 μg/mL (day 14), with a significant rise in cell metabolic activity over 7 days, and no observed cytotoxic effects. Confocal microscopy revealed elongated cell alignment on aligned fiber scaffolds, while rounded, disoriented cells were observed on non-aligned fiber scaffolds. Alizarin Red staining and calcium quantification confirmed osteogenic differentiation, as evidenced by mineral deposition on the scaffolds. This research therefore demonstrates the feasibility of this new method to repurpose laboratory polystyrene waste into sustainable cell culture tissue engineering scaffolds using eco-friendly solvents. Such an approach provides a route for cell culture for tissue engineering related activities to transition towards more sustainable and environmentally conscious scientific practices, thereby aligning with the principles of a circular economy.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture