{"title":"集抑菌、自愈能力、生长因子释放、电刺激、光热刺激于一体的五合一水凝胶,为复杂伤口修复量身定制","authors":"Simin Lai, Chenxi Shi, Liting Yuan, Kefeng Li, Xiaojing Wang, Xi Yu, Pengbi Liu, Huan Wang, Lihuan Wang* and Hui Yu*, ","doi":"10.1021/acsbiomaterials.5c0024410.1021/acsbiomaterials.5c00244","DOIUrl":null,"url":null,"abstract":"<p >Complex wound management remains a significant global challenge, and the development of multifunctional wound dressings that can effectively promote wound healing remains an urgent clinical need. Herein, a kind of multifunctional hydrogel wound dressing that combines bacteriostasis, self-healing capability, growth factor release, electrical stimulation, and photothermal stimulation is developed. This kind of wound dressing is generated by adding protocatechualdehyde (protocatechuic aldehyde (PA)), short core–shell fibers loading with platelet-rich-plasma (platelet-rich plasma fibers), and polydopamine-coated carbon nanotubes (PDA@CNTs) into quaternary ammonium chitosan (QCS) solution to form a shear-reversibly cross-linked QCS/PA/PDA@CNTs-PRP hydrogel. The obtained hydrogels possess impressive properties, including high swelling capacity (445–852%), strong adhesion ability (16.4–36.7 kPa), self-healing ability, injectability, conductivity (0.24–0.46 S/m), and photothermal properties. Notably, under near-infrared irradiation, the hydrogel exhibits a highly efficient bactericidal activity. In vitro experiments demonstrated that the hydrogel exhibits excellent biocompatibility and anti-inflammatory capability as well as its ability to stimulate cell proliferation, migration, and tubule formation. Moreover, the in vivo studies further confirmed that with the additional assistance of near-infrared light and electrical stimulation, the hydrogel further promotes wound epithelization, angiogenesis, and collagen deposition. Consequently, this hydrogel provides a promising therapeutic strategy for complex wound healing.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3709–3725 3709–3725"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Five-In-One Hydrogel Integrating Bacteriostasis, Self-Healing Capability, Growth Factor Release, Electrical Stimulation, and Photothermal Stimulation Tailored for Complex Wound Repair\",\"authors\":\"Simin Lai, Chenxi Shi, Liting Yuan, Kefeng Li, Xiaojing Wang, Xi Yu, Pengbi Liu, Huan Wang, Lihuan Wang* and Hui Yu*, \",\"doi\":\"10.1021/acsbiomaterials.5c0024410.1021/acsbiomaterials.5c00244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Complex wound management remains a significant global challenge, and the development of multifunctional wound dressings that can effectively promote wound healing remains an urgent clinical need. Herein, a kind of multifunctional hydrogel wound dressing that combines bacteriostasis, self-healing capability, growth factor release, electrical stimulation, and photothermal stimulation is developed. This kind of wound dressing is generated by adding protocatechualdehyde (protocatechuic aldehyde (PA)), short core–shell fibers loading with platelet-rich-plasma (platelet-rich plasma fibers), and polydopamine-coated carbon nanotubes (PDA@CNTs) into quaternary ammonium chitosan (QCS) solution to form a shear-reversibly cross-linked QCS/PA/PDA@CNTs-PRP hydrogel. The obtained hydrogels possess impressive properties, including high swelling capacity (445–852%), strong adhesion ability (16.4–36.7 kPa), self-healing ability, injectability, conductivity (0.24–0.46 S/m), and photothermal properties. Notably, under near-infrared irradiation, the hydrogel exhibits a highly efficient bactericidal activity. In vitro experiments demonstrated that the hydrogel exhibits excellent biocompatibility and anti-inflammatory capability as well as its ability to stimulate cell proliferation, migration, and tubule formation. Moreover, the in vivo studies further confirmed that with the additional assistance of near-infrared light and electrical stimulation, the hydrogel further promotes wound epithelization, angiogenesis, and collagen deposition. Consequently, this hydrogel provides a promising therapeutic strategy for complex wound healing.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 6\",\"pages\":\"3709–3725 3709–3725\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00244\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Five-In-One Hydrogel Integrating Bacteriostasis, Self-Healing Capability, Growth Factor Release, Electrical Stimulation, and Photothermal Stimulation Tailored for Complex Wound Repair
Complex wound management remains a significant global challenge, and the development of multifunctional wound dressings that can effectively promote wound healing remains an urgent clinical need. Herein, a kind of multifunctional hydrogel wound dressing that combines bacteriostasis, self-healing capability, growth factor release, electrical stimulation, and photothermal stimulation is developed. This kind of wound dressing is generated by adding protocatechualdehyde (protocatechuic aldehyde (PA)), short core–shell fibers loading with platelet-rich-plasma (platelet-rich plasma fibers), and polydopamine-coated carbon nanotubes (PDA@CNTs) into quaternary ammonium chitosan (QCS) solution to form a shear-reversibly cross-linked QCS/PA/PDA@CNTs-PRP hydrogel. The obtained hydrogels possess impressive properties, including high swelling capacity (445–852%), strong adhesion ability (16.4–36.7 kPa), self-healing ability, injectability, conductivity (0.24–0.46 S/m), and photothermal properties. Notably, under near-infrared irradiation, the hydrogel exhibits a highly efficient bactericidal activity. In vitro experiments demonstrated that the hydrogel exhibits excellent biocompatibility and anti-inflammatory capability as well as its ability to stimulate cell proliferation, migration, and tubule formation. Moreover, the in vivo studies further confirmed that with the additional assistance of near-infrared light and electrical stimulation, the hydrogel further promotes wound epithelization, angiogenesis, and collagen deposition. Consequently, this hydrogel provides a promising therapeutic strategy for complex wound healing.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture