Thelma Akanchise, Borislav Angelov, Yuru Deng, Takehiko Fujino, Thomas Bizien and Angelina Angelova*,
{"title":"天然脂质和植物化学物质自组装纳米治疗药物的纳米结构和抗氧化活性","authors":"Thelma Akanchise, Borislav Angelov, Yuru Deng, Takehiko Fujino, Thomas Bizien and Angelina Angelova*, ","doi":"10.1021/acsbiomaterials.5c0000610.1021/acsbiomaterials.5c00006","DOIUrl":null,"url":null,"abstract":"<p >Lyotropic liquid crystalline nanostructures formed by self-assembly in an aqueous medium are of fundamental interest and crucial for therapeutic applications, encapsulation of nutraceuticals, tissue engineering, and diagnostics. The biomimetic lipid bilayer building blocks impart biodegradable properties and low toxicity of the created nanoassemblies. The question of synergistic or quenching effects on the resulting bioactivity arises from the coencapsulation of multiple antioxidants (<i>e.g.,</i> vitamin E (VitE), curcumin (CU), or coenzyme Q<sub>10</sub>) in nanocarriers of mixed nonlamellar-phase lipids (e.g., amphiphilic monoglycerides or plasmalogens with long polyunsaturated fatty acid (PUFA) chains). The response to this question should favor phytochemical-based therapies against oxidative stress and inflammatory disorders using sustainable nanomedicines. Herein, we investigate the nanodispersion of multicomponent antioxidant/lipid mixtures using the copolymer Pluronic F127 and three PEGylated amphiphiles (TPGS-PEG<sub>1000</sub>, MO-PEG<sub>2000,</sub> and DSPE-PEG<sub>2000</sub>). The purpose is to establish possible relationships between the amphiphilic pharmaceutical compositions, structural stability, degradability in the biological cell culture medium, and the effects on antioxidant activity. The structures and the topologies of the phytochemical-loaded mesophases were revealed by synchrotron small-angle X-ray scattering and cryogenic transmission electron microscopy imaging. We found that encapsulated antioxidants (CU, Q<sub>10,</sub> or VitE) fine-tune the lipid bilayer properties and the nanostructure of the self-assembled systems to form lamellar (L), inverted hexagonal (H<sub>II</sub>), or cubic (<i>Im3m</i>) liquid crystalline phases. The results demonstrated that the composition of the nanoassemblies (lipids, dispersing agents, and antioxidants) governs the structural organization through changes in the interfacial curvature and miscibility effects. A minimal toxicity of the nanoassemblies was observed <i>in vitro</i> using the human neuroblastoma cell line (SH-SY5Y). The biodegradability/stability of the nanodispersions was linked with gradual dynamic changes in nanoparticle size distribution in the biological cell culture medium (DMEM). The established enhanced reactive oxygen species (ROS)-scavenging activity of the liquid crystalline nanoformulations is of interest for developing safe pharmaceutical nanosystems for multitargeted delivery of poorly soluble phytochemicals.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3488–3502 3488–3502"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructuring and Antioxidant Activity of Nanotherapeutics Designed by Self-Assembly of Natural Lipids and Phytochemicals\",\"authors\":\"Thelma Akanchise, Borislav Angelov, Yuru Deng, Takehiko Fujino, Thomas Bizien and Angelina Angelova*, \",\"doi\":\"10.1021/acsbiomaterials.5c0000610.1021/acsbiomaterials.5c00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lyotropic liquid crystalline nanostructures formed by self-assembly in an aqueous medium are of fundamental interest and crucial for therapeutic applications, encapsulation of nutraceuticals, tissue engineering, and diagnostics. The biomimetic lipid bilayer building blocks impart biodegradable properties and low toxicity of the created nanoassemblies. The question of synergistic or quenching effects on the resulting bioactivity arises from the coencapsulation of multiple antioxidants (<i>e.g.,</i> vitamin E (VitE), curcumin (CU), or coenzyme Q<sub>10</sub>) in nanocarriers of mixed nonlamellar-phase lipids (e.g., amphiphilic monoglycerides or plasmalogens with long polyunsaturated fatty acid (PUFA) chains). The response to this question should favor phytochemical-based therapies against oxidative stress and inflammatory disorders using sustainable nanomedicines. Herein, we investigate the nanodispersion of multicomponent antioxidant/lipid mixtures using the copolymer Pluronic F127 and three PEGylated amphiphiles (TPGS-PEG<sub>1000</sub>, MO-PEG<sub>2000,</sub> and DSPE-PEG<sub>2000</sub>). The purpose is to establish possible relationships between the amphiphilic pharmaceutical compositions, structural stability, degradability in the biological cell culture medium, and the effects on antioxidant activity. The structures and the topologies of the phytochemical-loaded mesophases were revealed by synchrotron small-angle X-ray scattering and cryogenic transmission electron microscopy imaging. We found that encapsulated antioxidants (CU, Q<sub>10,</sub> or VitE) fine-tune the lipid bilayer properties and the nanostructure of the self-assembled systems to form lamellar (L), inverted hexagonal (H<sub>II</sub>), or cubic (<i>Im3m</i>) liquid crystalline phases. The results demonstrated that the composition of the nanoassemblies (lipids, dispersing agents, and antioxidants) governs the structural organization through changes in the interfacial curvature and miscibility effects. A minimal toxicity of the nanoassemblies was observed <i>in vitro</i> using the human neuroblastoma cell line (SH-SY5Y). The biodegradability/stability of the nanodispersions was linked with gradual dynamic changes in nanoparticle size distribution in the biological cell culture medium (DMEM). The established enhanced reactive oxygen species (ROS)-scavenging activity of the liquid crystalline nanoformulations is of interest for developing safe pharmaceutical nanosystems for multitargeted delivery of poorly soluble phytochemicals.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 6\",\"pages\":\"3488–3502 3488–3502\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Nanostructuring and Antioxidant Activity of Nanotherapeutics Designed by Self-Assembly of Natural Lipids and Phytochemicals
Lyotropic liquid crystalline nanostructures formed by self-assembly in an aqueous medium are of fundamental interest and crucial for therapeutic applications, encapsulation of nutraceuticals, tissue engineering, and diagnostics. The biomimetic lipid bilayer building blocks impart biodegradable properties and low toxicity of the created nanoassemblies. The question of synergistic or quenching effects on the resulting bioactivity arises from the coencapsulation of multiple antioxidants (e.g., vitamin E (VitE), curcumin (CU), or coenzyme Q10) in nanocarriers of mixed nonlamellar-phase lipids (e.g., amphiphilic monoglycerides or plasmalogens with long polyunsaturated fatty acid (PUFA) chains). The response to this question should favor phytochemical-based therapies against oxidative stress and inflammatory disorders using sustainable nanomedicines. Herein, we investigate the nanodispersion of multicomponent antioxidant/lipid mixtures using the copolymer Pluronic F127 and three PEGylated amphiphiles (TPGS-PEG1000, MO-PEG2000, and DSPE-PEG2000). The purpose is to establish possible relationships between the amphiphilic pharmaceutical compositions, structural stability, degradability in the biological cell culture medium, and the effects on antioxidant activity. The structures and the topologies of the phytochemical-loaded mesophases were revealed by synchrotron small-angle X-ray scattering and cryogenic transmission electron microscopy imaging. We found that encapsulated antioxidants (CU, Q10, or VitE) fine-tune the lipid bilayer properties and the nanostructure of the self-assembled systems to form lamellar (L), inverted hexagonal (HII), or cubic (Im3m) liquid crystalline phases. The results demonstrated that the composition of the nanoassemblies (lipids, dispersing agents, and antioxidants) governs the structural organization through changes in the interfacial curvature and miscibility effects. A minimal toxicity of the nanoassemblies was observed in vitro using the human neuroblastoma cell line (SH-SY5Y). The biodegradability/stability of the nanodispersions was linked with gradual dynamic changes in nanoparticle size distribution in the biological cell culture medium (DMEM). The established enhanced reactive oxygen species (ROS)-scavenging activity of the liquid crystalline nanoformulations is of interest for developing safe pharmaceutical nanosystems for multitargeted delivery of poorly soluble phytochemicals.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture