基于可编程石墨烯/硅肖特基二极管的二值神经网络用于传感器内处理图像传感器

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Penghao Chen, Haoran Sun, Ziyu Ming, Yusen Tian and Zengxing Zhang*, 
{"title":"基于可编程石墨烯/硅肖特基二极管的二值神经网络用于传感器内处理图像传感器","authors":"Penghao Chen,&nbsp;Haoran Sun,&nbsp;Ziyu Ming,&nbsp;Yusen Tian and Zengxing Zhang*,&nbsp;","doi":"10.1021/acsnano.5c0477810.1021/acsnano.5c04778","DOIUrl":null,"url":null,"abstract":"<p >Recent advancements in in-sensor computing technology have demonstrated significant advantages in time latency and energy efficiency in visual information processing through device-level integration of photosensing and neuromorphic computing. However, current implementations face challenges due to their single-layer architecture, creating an urgent demand for the development of devices that integrate front-end in-sensor processing with back-end computing layers. Here, we report a programmable graphene/Si Schottky diode (PGSSD) featuring gate-voltage-programmed photoresponsivity and rectification direction. The programmability of the photoresponsivity enables the application of reconfigurable convolution kernels to implement in-sensor convolution of optical images. Simultaneously, the programmable rectification direction permits analog-domain execution of quasi-binary multiply-accumulate (MAC) operations. Based on these capabilities, we constructed a complete binary neural network (BNN) using the PGSSDs and demonstrated its application for image recognition. The BNN combines front-end convolution processing and back-end computing layers, achieving an inference accuracy of 98.35% on the MNIST database.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 22","pages":"21030–21037 21030–21037"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Neural Network Based on a Programmable Graphene/Si Schottky Diode for In-Sensor Processing Image Sensors\",\"authors\":\"Penghao Chen,&nbsp;Haoran Sun,&nbsp;Ziyu Ming,&nbsp;Yusen Tian and Zengxing Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0477810.1021/acsnano.5c04778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recent advancements in in-sensor computing technology have demonstrated significant advantages in time latency and energy efficiency in visual information processing through device-level integration of photosensing and neuromorphic computing. However, current implementations face challenges due to their single-layer architecture, creating an urgent demand for the development of devices that integrate front-end in-sensor processing with back-end computing layers. Here, we report a programmable graphene/Si Schottky diode (PGSSD) featuring gate-voltage-programmed photoresponsivity and rectification direction. The programmability of the photoresponsivity enables the application of reconfigurable convolution kernels to implement in-sensor convolution of optical images. Simultaneously, the programmable rectification direction permits analog-domain execution of quasi-binary multiply-accumulate (MAC) operations. Based on these capabilities, we constructed a complete binary neural network (BNN) using the PGSSDs and demonstrated its application for image recognition. The BNN combines front-end convolution processing and back-end computing layers, achieving an inference accuracy of 98.35% on the MNIST database.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 22\",\"pages\":\"21030–21037 21030–21037\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c04778\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04778","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传感器内计算技术的最新进展表明,通过光敏和神经形态计算的设备级集成,在视觉信息处理的时间延迟和能量效率方面具有显着优势。然而,由于其单层架构,目前的实现面临挑战,迫切需要开发将前端传感器内处理与后端计算层集成在一起的设备。在这里,我们报道了一种可编程石墨烯/硅肖特基二极管(PGSSD),具有门电压可编程光响应性和整流方向。光响应性的可编程性使可重构卷积核的应用能够实现光学图像的传感器内卷积。同时,可编程整流方向允许模拟域执行准二进制乘法累加(MAC)操作。基于这些功能,我们使用pgssd构建了一个完整的二进制神经网络(BNN),并演示了其在图像识别中的应用。BNN结合了前端卷积处理和后端计算层,在MNIST数据库上实现了98.35%的推理准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Binary Neural Network Based on a Programmable Graphene/Si Schottky Diode for In-Sensor Processing Image Sensors

Binary Neural Network Based on a Programmable Graphene/Si Schottky Diode for In-Sensor Processing Image Sensors

Recent advancements in in-sensor computing technology have demonstrated significant advantages in time latency and energy efficiency in visual information processing through device-level integration of photosensing and neuromorphic computing. However, current implementations face challenges due to their single-layer architecture, creating an urgent demand for the development of devices that integrate front-end in-sensor processing with back-end computing layers. Here, we report a programmable graphene/Si Schottky diode (PGSSD) featuring gate-voltage-programmed photoresponsivity and rectification direction. The programmability of the photoresponsivity enables the application of reconfigurable convolution kernels to implement in-sensor convolution of optical images. Simultaneously, the programmable rectification direction permits analog-domain execution of quasi-binary multiply-accumulate (MAC) operations. Based on these capabilities, we constructed a complete binary neural network (BNN) using the PGSSDs and demonstrated its application for image recognition. The BNN combines front-end convolution processing and back-end computing layers, achieving an inference accuracy of 98.35% on the MNIST database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信