MXene -电解质界面的原位拉曼和傅立叶变换红外光谱研究

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-09 DOI:10.1021/acsnano.5c03810
Tetiana Parker, Yuan Zhang, Kateryna Shevchuk, Teng Zhang, Vikash Khokhar, Young-Hwan Kim, Givi Kadagishvili, David Bugallo, Manushree Tanwar, Ben Davis, Jongyoun Kim, Zahra Fakhraai*, Yong-Jie Hu*, De-en Jiang*, Dmitri V. Talapin* and Yury Gogotsi*, 
{"title":"MXene -电解质界面的原位拉曼和傅立叶变换红外光谱研究","authors":"Tetiana Parker,&nbsp;Yuan Zhang,&nbsp;Kateryna Shevchuk,&nbsp;Teng Zhang,&nbsp;Vikash Khokhar,&nbsp;Young-Hwan Kim,&nbsp;Givi Kadagishvili,&nbsp;David Bugallo,&nbsp;Manushree Tanwar,&nbsp;Ben Davis,&nbsp;Jongyoun Kim,&nbsp;Zahra Fakhraai*,&nbsp;Yong-Jie Hu*,&nbsp;De-en Jiang*,&nbsp;Dmitri V. Talapin* and Yury Gogotsi*,&nbsp;","doi":"10.1021/acsnano.5c03810","DOIUrl":null,"url":null,"abstract":"<p >A comprehensive understanding of electrochemical interfaces is essential for the optimal performance of electrocatalysts, supercapacitors, and batteries. However, understanding the electrochemical behavior of MXenes during electrochemical processes by any single technique does not provide a whole picture. We achieved real-time monitoring in the complete near-mid-infrared chemical range by utilizing Raman spectroscopy (near-infrared (NIR) excitation) and Fourier transform infrared (FTIR) spectroscopy in the mid-infrared (MIR) range. The change of intramolecular O−H vibrations of MXene-confined water was monitored in real time using FTIR, while surface terminations were monitored by using Raman spectroscopy. The dynamic interplay between charge storage and the change in MXene surface chemistry was studied by employing representative electrolytes (0.5 M H<sub>2</sub>SO<sub>4</sub>, 1 M LiCl, and 6 M KOH) and comparing hydrophilic Ti<sub>3</sub>C<sub>2</sub>T<i><sub><i>x</i></sub></i> with mixed-terminations (T = O/OH/F) with hydrophobic chlorine-terminated Ti<sub>3</sub>C<sub>2</sub>Cl<sub>2</sub> MXene electrodes. <i>Ab initio</i> molecular dynamics (MD) simulations and density functional theory (DFT) calculations were used to shed light on ion insertion with a dynamic change of ion solvation and reveal the structure of the MXene-confined water.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 24","pages":"22228–22239"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c03810","citationCount":"0","resultStr":"{\"title\":\"In Situ Raman and Fourier Transform Infrared Spectroscopy Studies of MXene−Electrolyte Interfaces\",\"authors\":\"Tetiana Parker,&nbsp;Yuan Zhang,&nbsp;Kateryna Shevchuk,&nbsp;Teng Zhang,&nbsp;Vikash Khokhar,&nbsp;Young-Hwan Kim,&nbsp;Givi Kadagishvili,&nbsp;David Bugallo,&nbsp;Manushree Tanwar,&nbsp;Ben Davis,&nbsp;Jongyoun Kim,&nbsp;Zahra Fakhraai*,&nbsp;Yong-Jie Hu*,&nbsp;De-en Jiang*,&nbsp;Dmitri V. Talapin* and Yury Gogotsi*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c03810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A comprehensive understanding of electrochemical interfaces is essential for the optimal performance of electrocatalysts, supercapacitors, and batteries. However, understanding the electrochemical behavior of MXenes during electrochemical processes by any single technique does not provide a whole picture. We achieved real-time monitoring in the complete near-mid-infrared chemical range by utilizing Raman spectroscopy (near-infrared (NIR) excitation) and Fourier transform infrared (FTIR) spectroscopy in the mid-infrared (MIR) range. The change of intramolecular O−H vibrations of MXene-confined water was monitored in real time using FTIR, while surface terminations were monitored by using Raman spectroscopy. The dynamic interplay between charge storage and the change in MXene surface chemistry was studied by employing representative electrolytes (0.5 M H<sub>2</sub>SO<sub>4</sub>, 1 M LiCl, and 6 M KOH) and comparing hydrophilic Ti<sub>3</sub>C<sub>2</sub>T<i><sub><i>x</i></sub></i> with mixed-terminations (T = O/OH/F) with hydrophobic chlorine-terminated Ti<sub>3</sub>C<sub>2</sub>Cl<sub>2</sub> MXene electrodes. <i>Ab initio</i> molecular dynamics (MD) simulations and density functional theory (DFT) calculations were used to shed light on ion insertion with a dynamic change of ion solvation and reveal the structure of the MXene-confined water.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 24\",\"pages\":\"22228–22239\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c03810\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03810\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03810","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全面了解电化学界面对于电催化剂、超级电容器和电池的最佳性能至关重要。然而,通过任何一种技术来了解MXenes在电化学过程中的电化学行为并不能提供全貌。我们利用拉曼光谱(近红外(NIR)激发)和傅里叶变换红外(FTIR)光谱在中红外(MIR)范围内实现了全近中红外化学范围的实时监测。利用傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman spectroscopy)实时监测了mxene -承压水分子内O−H振动的变化。采用代表性电解液(0.5 M H2SO4、1 M LiCl和6 M KOH),并将混合末端(T = O/OH/F)的亲水性Ti3C2Tx与疏水端氯Ti3C2Cl2 MXene电极进行比较,研究了电荷存储与MXene表面化学变化之间的动态相互作用。采用从头算分子动力学(MD)模拟和密度泛函理论(DFT)计算,揭示了离子溶剂化动态变化时离子插入的过程,揭示了mxene封闭水的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Raman and Fourier Transform Infrared Spectroscopy Studies of MXene−Electrolyte Interfaces

In Situ Raman and Fourier Transform Infrared Spectroscopy Studies of MXene−Electrolyte Interfaces

A comprehensive understanding of electrochemical interfaces is essential for the optimal performance of electrocatalysts, supercapacitors, and batteries. However, understanding the electrochemical behavior of MXenes during electrochemical processes by any single technique does not provide a whole picture. We achieved real-time monitoring in the complete near-mid-infrared chemical range by utilizing Raman spectroscopy (near-infrared (NIR) excitation) and Fourier transform infrared (FTIR) spectroscopy in the mid-infrared (MIR) range. The change of intramolecular O−H vibrations of MXene-confined water was monitored in real time using FTIR, while surface terminations were monitored by using Raman spectroscopy. The dynamic interplay between charge storage and the change in MXene surface chemistry was studied by employing representative electrolytes (0.5 M H2SO4, 1 M LiCl, and 6 M KOH) and comparing hydrophilic Ti3C2Tx with mixed-terminations (T = O/OH/F) with hydrophobic chlorine-terminated Ti3C2Cl2 MXene electrodes. Ab initio molecular dynamics (MD) simulations and density functional theory (DFT) calculations were used to shed light on ion insertion with a dynamic change of ion solvation and reveal the structure of the MXene-confined water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信