硫化诱导介孔中空NiCo2S4多面体用于具有优异电化学稳定性的高性能非对称超级电容器

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Naveen T. Bharanitharan , Durgalakshmi Dhinasekaran , M.R. Ashwin Kishore , Balakumar Subramanian , Ajay Rakkesh Rajendran
{"title":"硫化诱导介孔中空NiCo2S4多面体用于具有优异电化学稳定性的高性能非对称超级电容器","authors":"Naveen T. Bharanitharan ,&nbsp;Durgalakshmi Dhinasekaran ,&nbsp;M.R. Ashwin Kishore ,&nbsp;Balakumar Subramanian ,&nbsp;Ajay Rakkesh Rajendran","doi":"10.1016/j.cej.2025.164556","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative approach to deriving highly mesoporous hollow NiCo<sub>2</sub>S<sub>4</sub> polyhedrons from zeolitic imidazolate frameworks (ZIFs), with a focus on electrochemical efficiency. Synthesized via a straightforward coprecipitation route, the NiCo-ZIFs were transformed directly into bimetallic sulfides using thioacetamide as a sulfur source, allowing gradual dissolution of the ZIF’s inner layers. This process formed hollow polyhedrons with retained morphology and significantly enhanced mesoporosity, confirmed by BET analysis, showing a high surface area of 165 m<sup>2</sup>/g. Electrochemical characterization revealed a remarkable specific capacitance of 1357 F g<sup>−1</sup> at 1 A g<sup>−1</sup> and 91.1 % retention after 5000 cycles, showcasing enhanced electrochemical stability, supported through ex-situ XRD and SEM analysis. In a two-electrode configuration with biomass-derived reduced graphene oxide (rGO) as the counter electrode, the NiCo<sub>2</sub>S<sub>4</sub> delivered a maximum energy density of 58.5 Wh kg<sup>−1</sup> and a power density of 3.44 kW kg<sup>−1</sup>. This high-performance behaviour led to the successful fabrication of an asymmetric supercapacitor, demonstrating the practical applicability and robust reliability of the NiCo<sub>2</sub>S<sub>4</sub> polyhedrons for next-generation energy storage solutions in real-world applications.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"518 ","pages":"Article 164556"},"PeriodicalIF":13.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfurization-induced mesoporous hollow NiCo2S4 polyhedrons from ZIFs for high-performance asymmetric supercapacitors with superior electrochemical stability\",\"authors\":\"Naveen T. Bharanitharan ,&nbsp;Durgalakshmi Dhinasekaran ,&nbsp;M.R. Ashwin Kishore ,&nbsp;Balakumar Subramanian ,&nbsp;Ajay Rakkesh Rajendran\",\"doi\":\"10.1016/j.cej.2025.164556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces an innovative approach to deriving highly mesoporous hollow NiCo<sub>2</sub>S<sub>4</sub> polyhedrons from zeolitic imidazolate frameworks (ZIFs), with a focus on electrochemical efficiency. Synthesized via a straightforward coprecipitation route, the NiCo-ZIFs were transformed directly into bimetallic sulfides using thioacetamide as a sulfur source, allowing gradual dissolution of the ZIF’s inner layers. This process formed hollow polyhedrons with retained morphology and significantly enhanced mesoporosity, confirmed by BET analysis, showing a high surface area of 165 m<sup>2</sup>/g. Electrochemical characterization revealed a remarkable specific capacitance of 1357 F g<sup>−1</sup> at 1 A g<sup>−1</sup> and 91.1 % retention after 5000 cycles, showcasing enhanced electrochemical stability, supported through ex-situ XRD and SEM analysis. In a two-electrode configuration with biomass-derived reduced graphene oxide (rGO) as the counter electrode, the NiCo<sub>2</sub>S<sub>4</sub> delivered a maximum energy density of 58.5 Wh kg<sup>−1</sup> and a power density of 3.44 kW kg<sup>−1</sup>. This high-performance behaviour led to the successful fabrication of an asymmetric supercapacitor, demonstrating the practical applicability and robust reliability of the NiCo<sub>2</sub>S<sub>4</sub> polyhedrons for next-generation energy storage solutions in real-world applications.</div></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"518 \",\"pages\":\"Article 164556\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894725053926\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894725053926","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种从沸石咪唑盐框架(ZIFs)中获得高介孔中空NiCo2S4多面体的创新方法,重点是电化学效率。通过直接的共沉淀法合成,nico -ZIF直接转化为双金属硫化物,使用硫代乙酰胺作为硫源,允许ZIF的内层逐渐溶解。BET分析证实,该工艺形成的中空多面体形态保持不变,介孔率显著增强,比表面积高达165 m2/g。电化学表征表明,在1 a g−1时的比电容为1357 F g−1,在5000次 循环后的保留率为91.1 %,显示出增强的电化学稳定性,通过非原位XRD和SEM分析得到了支持。在以生物质还原氧化石墨烯(rGO)作为反电极的双电极结构中,NiCo2S4的最大能量密度为58.5 Wh kg−1,功率密度为3.44 kW kg−1。这种高性能行为导致了不对称超级电容器的成功制造,证明了NiCo2S4多面体在实际应用中的下一代储能解决方案的实用性和强大的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sulfurization-induced mesoporous hollow NiCo2S4 polyhedrons from ZIFs for high-performance asymmetric supercapacitors with superior electrochemical stability

Sulfurization-induced mesoporous hollow NiCo2S4 polyhedrons from ZIFs for high-performance asymmetric supercapacitors with superior electrochemical stability
This study introduces an innovative approach to deriving highly mesoporous hollow NiCo2S4 polyhedrons from zeolitic imidazolate frameworks (ZIFs), with a focus on electrochemical efficiency. Synthesized via a straightforward coprecipitation route, the NiCo-ZIFs were transformed directly into bimetallic sulfides using thioacetamide as a sulfur source, allowing gradual dissolution of the ZIF’s inner layers. This process formed hollow polyhedrons with retained morphology and significantly enhanced mesoporosity, confirmed by BET analysis, showing a high surface area of 165 m2/g. Electrochemical characterization revealed a remarkable specific capacitance of 1357 F g−1 at 1 A g−1 and 91.1 % retention after 5000 cycles, showcasing enhanced electrochemical stability, supported through ex-situ XRD and SEM analysis. In a two-electrode configuration with biomass-derived reduced graphene oxide (rGO) as the counter electrode, the NiCo2S4 delivered a maximum energy density of 58.5 Wh kg−1 and a power density of 3.44 kW kg−1. This high-performance behaviour led to the successful fabrication of an asymmetric supercapacitor, demonstrating the practical applicability and robust reliability of the NiCo2S4 polyhedrons for next-generation energy storage solutions in real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信