在硅中进行高保真单自旋穿梭

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maxim De Smet, Yuta Matsumoto, Anne-Marije J. Zwerver, Larysa Tryputen, Sander L. de Snoo, Sergey V. Amitonov, Sam R. Katiraee-Far, Amir Sammak, Nodar Samkharadze, Önder Gül, Rick N. M. Wasserman, Eliška Greplová, Maximilian Rimbach-Russ, Giordano Scappucci, Lieven M. K. Vandersypen
{"title":"在硅中进行高保真单自旋穿梭","authors":"Maxim De Smet, Yuta Matsumoto, Anne-Marije J. Zwerver, Larysa Tryputen, Sander L. de Snoo, Sergey V. Amitonov, Sam R. Katiraee-Far, Amir Sammak, Nodar Samkharadze, Önder Gül, Rick N. M. Wasserman, Eliška Greplová, Maximilian Rimbach-Russ, Giordano Scappucci, Lieven M. K. Vandersypen","doi":"10.1038/s41565-025-01920-5","DOIUrl":null,"url":null,"abstract":"<p>The computational power and fault tolerance of future large-scale quantum processors derive in large part from the connectivity between the qubits. One approach to increase connectivity is to engineer qubit–qubit interactions at a distance. Alternatively, the connectivity can be increased by physically displacing the qubits. For semiconductor spin qubits, several studies have investigated spin coherent shuttling of individual electrons, but high-fidelity transport over extended distances remains to be demonstrated. Here we report shuttling of an electron inside an isotopically purified Si/SiGe heterostructure using electric gate potentials. In a first set of experiments, we form static quantum dots and study how spin coherence decays during bucket-brigade shuttling, where we repeatedly move a single electron between up to five dots. Next, for conveyor-mode shuttling, we create a travelling-wave potential, formed with either one or two sets of sine waves, to transport an electron in a moving quantum dot. This method shows a spin coherence an order of magnitude better than the bucket-brigade shuttling. It allows us to displace an electron over an effective distance of 10 μm in under 200 ns while preserving the spin state with a fidelity of 99.5% on average. These results will guide future efforts to realize large-scale semiconductor quantum processors, making use of electron shuttling both within and between qubit arrays.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"70 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-fidelity single-spin shuttling in silicon\",\"authors\":\"Maxim De Smet, Yuta Matsumoto, Anne-Marije J. Zwerver, Larysa Tryputen, Sander L. de Snoo, Sergey V. Amitonov, Sam R. Katiraee-Far, Amir Sammak, Nodar Samkharadze, Önder Gül, Rick N. M. Wasserman, Eliška Greplová, Maximilian Rimbach-Russ, Giordano Scappucci, Lieven M. K. Vandersypen\",\"doi\":\"10.1038/s41565-025-01920-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The computational power and fault tolerance of future large-scale quantum processors derive in large part from the connectivity between the qubits. One approach to increase connectivity is to engineer qubit–qubit interactions at a distance. Alternatively, the connectivity can be increased by physically displacing the qubits. For semiconductor spin qubits, several studies have investigated spin coherent shuttling of individual electrons, but high-fidelity transport over extended distances remains to be demonstrated. Here we report shuttling of an electron inside an isotopically purified Si/SiGe heterostructure using electric gate potentials. In a first set of experiments, we form static quantum dots and study how spin coherence decays during bucket-brigade shuttling, where we repeatedly move a single electron between up to five dots. Next, for conveyor-mode shuttling, we create a travelling-wave potential, formed with either one or two sets of sine waves, to transport an electron in a moving quantum dot. This method shows a spin coherence an order of magnitude better than the bucket-brigade shuttling. It allows us to displace an electron over an effective distance of 10 μm in under 200 ns while preserving the spin state with a fidelity of 99.5% on average. These results will guide future efforts to realize large-scale semiconductor quantum processors, making use of electron shuttling both within and between qubit arrays.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01920-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01920-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

未来大规模量子处理器的计算能力和容错能力在很大程度上取决于量子比特之间的连通性。增加连通性的一种方法是设计远距离的量子比特-量子比特相互作用。或者,可以通过物理替换量子比特来增加连通性。对于半导体自旋量子位,一些研究已经研究了单个电子的自旋相干穿梭,但长距离的高保真传输仍有待证明。在这里,我们报道了利用栅极电位在同位素纯化的Si/SiGe异质结构内部穿梭电子。在第一组实验中,我们形成了静态量子点,并研究了自旋相干性在桶队穿梭期间是如何衰减的,在桶队穿梭中,我们在多达五个点之间反复移动单个电子。接下来,对于传送带模式的穿梭,我们创建一个行波势,由一组或两组正弦波组成,在移动的量子点中传输电子。这种方法的自旋相干性比桶队穿梭法好一个数量级。它使我们能够在200 ns内在10 μm的有效距离内置换电子,同时保持自旋态的保真度平均为99.5%。这些结果将指导未来实现大规模半导体量子处理器的努力,利用量子比特阵列内部和之间的电子穿梭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-fidelity single-spin shuttling in silicon

High-fidelity single-spin shuttling in silicon

The computational power and fault tolerance of future large-scale quantum processors derive in large part from the connectivity between the qubits. One approach to increase connectivity is to engineer qubit–qubit interactions at a distance. Alternatively, the connectivity can be increased by physically displacing the qubits. For semiconductor spin qubits, several studies have investigated spin coherent shuttling of individual electrons, but high-fidelity transport over extended distances remains to be demonstrated. Here we report shuttling of an electron inside an isotopically purified Si/SiGe heterostructure using electric gate potentials. In a first set of experiments, we form static quantum dots and study how spin coherence decays during bucket-brigade shuttling, where we repeatedly move a single electron between up to five dots. Next, for conveyor-mode shuttling, we create a travelling-wave potential, formed with either one or two sets of sine waves, to transport an electron in a moving quantum dot. This method shows a spin coherence an order of magnitude better than the bucket-brigade shuttling. It allows us to displace an electron over an effective distance of 10 μm in under 200 ns while preserving the spin state with a fidelity of 99.5% on average. These results will guide future efforts to realize large-scale semiconductor quantum processors, making use of electron shuttling both within and between qubit arrays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信