增氧灌溉条件下施氮通过提高番茄叶片碳氮储量缓解干旱胁迫

IF 3.6 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES
Xiaoyan Li, Yadan Du, Tinglin Yan, Yuming Wang, Yining Lu, Xiaobo Gu, Wenquan Niu, Kadambot H. M. Siddique
{"title":"增氧灌溉条件下施氮通过提高番茄叶片碳氮储量缓解干旱胁迫","authors":"Xiaoyan Li, Yadan Du, Tinglin Yan, Yuming Wang, Yining Lu, Xiaobo Gu, Wenquan Niu, Kadambot H. M. Siddique","doi":"10.1002/ldr.5667","DOIUrl":null,"url":null,"abstract":"Nitrogen (N) application can improve drought tolerance and water use efficiency (WUE) in crops. Previous studies have shown that aerated irrigation improves crop nitrogen absorption and utilization. However, the mechanisms behind the interaction of water and nitrogen under aerated drip irrigation and its impact on crop WUE remain unclear. This study conducted a 2‐years greenhouse experiment with spring‐summer and autumn‐winter tomato to investigate the effects of water and nitrogen coupling on leaf carbon (C) and nitrogen content, photosynthetic characteristics, plant dry matter accumulation, yield, and WUE. The experiment included three irrigation levels (W1, 50% ET<jats:sub>c</jats:sub>; W2, 75% ET<jats:sub>c</jats:sub>; W3, 100% ET<jats:sub>c</jats:sub>) and three nitrogen application rates (N1, 0 kg ha<jats:sup>−1</jats:sup>; N2, 150 kg ha<jats:sup>−1</jats:sup>; N3, 250 kg ha<jats:sup>−1</jats:sup>). The results showed that increased nitrogen application and irrigation levels significantly increased leaf carbon and nitrogen content, net photosynthetic rate (<jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>), and stomatal conductance (<jats:italic>G</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>) (<jats:italic>p</jats:italic> &lt; 0.05). Under deficit irrigation, nitrogen application increased leaf carbon content by 2.17% and nitrogen content by 9.34%, improved leaf photosynthetic capacity, and increased <jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub> by 15.57% and <jats:italic>G</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> by 19.32%. The W2 treatment demonstrated more significant improvement compared to W1. The W3N3 treatment produced the highest plant dry matter accumulation for both tomato types, with no significant difference from W2N3 (<jats:italic>p</jats:italic> &gt; 0.05). The W2N3 treatment produced the highest yield, 8.67%–9.13% higher than W3N3. The highest WUE occurred in W2N3 for spring‐summer tomato and W1N3 for autumn‐winter tomato. Although W1N3 had 1.02% higher WUE than W2N3, it had a 15.25% lower yield. Thus, W2N3 is recommended as the optimal water‐nitrogen management strategy for greenhouse tomato production. Correlation analysis revealed that leaf carbon and nitrogen contents positively correlated with <jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>, plant dry matter accumulation, and yield, whereas the leaf ratio of carbon and nitrogen (C/N) negatively correlated with WUE, suggesting that leaf carbon and nitrogen contents regulate tomato WUE. Nitrogen application under deficit irrigation enhanced leaf carbon and nitrogen contents, photosynthetic capacity (<jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>, <jats:italic>G</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>), plant dry matter accumulation, yield, and WUE. Regression models suggest that the optimal water and nitrogen application rates for greenhouse tomatoes are 192.30–225.67 mm and 205.93–243.43 kg ha<jats:sup>−1</jats:sup> for spring‐summer tomato, and 162.00–181.18 mm and 194.98–237.73 kg ha<jats:sup>−1</jats:sup> for autumn‐winter tomato. These findings provide a theoretical basis for water‐efficient agricultural practices and sustainable greenhouse tomato production.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen Application Under Aerated Irrigation Mitigated Drought Stress by Improving Leaf Carbon and Nitrogen Reserves in Tomato\",\"authors\":\"Xiaoyan Li, Yadan Du, Tinglin Yan, Yuming Wang, Yining Lu, Xiaobo Gu, Wenquan Niu, Kadambot H. M. Siddique\",\"doi\":\"10.1002/ldr.5667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen (N) application can improve drought tolerance and water use efficiency (WUE) in crops. Previous studies have shown that aerated irrigation improves crop nitrogen absorption and utilization. However, the mechanisms behind the interaction of water and nitrogen under aerated drip irrigation and its impact on crop WUE remain unclear. This study conducted a 2‐years greenhouse experiment with spring‐summer and autumn‐winter tomato to investigate the effects of water and nitrogen coupling on leaf carbon (C) and nitrogen content, photosynthetic characteristics, plant dry matter accumulation, yield, and WUE. The experiment included three irrigation levels (W1, 50% ET<jats:sub>c</jats:sub>; W2, 75% ET<jats:sub>c</jats:sub>; W3, 100% ET<jats:sub>c</jats:sub>) and three nitrogen application rates (N1, 0 kg ha<jats:sup>−1</jats:sup>; N2, 150 kg ha<jats:sup>−1</jats:sup>; N3, 250 kg ha<jats:sup>−1</jats:sup>). The results showed that increased nitrogen application and irrigation levels significantly increased leaf carbon and nitrogen content, net photosynthetic rate (<jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>), and stomatal conductance (<jats:italic>G</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>) (<jats:italic>p</jats:italic> &lt; 0.05). Under deficit irrigation, nitrogen application increased leaf carbon content by 2.17% and nitrogen content by 9.34%, improved leaf photosynthetic capacity, and increased <jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub> by 15.57% and <jats:italic>G</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> by 19.32%. The W2 treatment demonstrated more significant improvement compared to W1. The W3N3 treatment produced the highest plant dry matter accumulation for both tomato types, with no significant difference from W2N3 (<jats:italic>p</jats:italic> &gt; 0.05). The W2N3 treatment produced the highest yield, 8.67%–9.13% higher than W3N3. The highest WUE occurred in W2N3 for spring‐summer tomato and W1N3 for autumn‐winter tomato. Although W1N3 had 1.02% higher WUE than W2N3, it had a 15.25% lower yield. Thus, W2N3 is recommended as the optimal water‐nitrogen management strategy for greenhouse tomato production. Correlation analysis revealed that leaf carbon and nitrogen contents positively correlated with <jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>, plant dry matter accumulation, and yield, whereas the leaf ratio of carbon and nitrogen (C/N) negatively correlated with WUE, suggesting that leaf carbon and nitrogen contents regulate tomato WUE. Nitrogen application under deficit irrigation enhanced leaf carbon and nitrogen contents, photosynthetic capacity (<jats:italic>P</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>, <jats:italic>G</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>), plant dry matter accumulation, yield, and WUE. Regression models suggest that the optimal water and nitrogen application rates for greenhouse tomatoes are 192.30–225.67 mm and 205.93–243.43 kg ha<jats:sup>−1</jats:sup> for spring‐summer tomato, and 162.00–181.18 mm and 194.98–237.73 kg ha<jats:sup>−1</jats:sup> for autumn‐winter tomato. These findings provide a theoretical basis for water‐efficient agricultural practices and sustainable greenhouse tomato production.\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ldr.5667\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5667","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

施氮可以提高作物的耐旱性和水分利用效率。以往的研究表明,增氧灌溉提高了作物对氮的吸收和利用。然而,曝气滴灌条件下水氮相互作用的机制及其对作物水分利用效率的影响尚不清楚。本研究以春夏番茄和秋冬番茄为材料,进行了为期2年的温室试验,研究了水氮耦合对叶片碳氮含量、光合特性、植株干物质积累、产量和水分利用效率的影响。试验包括三个灌溉水平(W1、50%等);W2、75%等;W3, 100%等)和三种氮肥施用量(N1, 0 kg ha−1;N2, 150 kg ha−1;N3, 250 kg ha−1)。结果表明,增加施氮量和灌溉量显著提高了叶片碳氮含量、净光合速率(Pn)和气孔导度(Gs) (p <;0.05)。亏缺灌溉条件下,施氮使叶片碳含量和氮含量分别提高了2.17%和9.34%,提高了叶片光合能力,Pn和Gs分别提高了15.57%和19.32%。与W1处理相比,W2处理表现出更显著的改善。W3N3处理使两种番茄植株干物质积累量最高,与W2N3处理无显著差异(p >;0.05)。W2N3处理产量最高,比W3N3处理高出8.67% ~ 9.13%。春夏番茄W2N3和秋冬番茄W1N3的水分利用效率最高。W1N3的WUE比W2N3高1.02%,但产率却低15.25%。因此,推荐W2N3作为温室番茄生产的最佳水氮管理策略。相关分析表明,叶片碳氮含量与光合速率、植株干物质积累量和产量呈正相关,而叶片碳氮比(C/N)与水分利用效率呈负相关,说明叶片碳氮含量对番茄水分利用效率起调节作用。亏缺灌溉条件下施氮提高了叶片碳氮含量、光合能力(Pn、Gs)、植株干物质积累、产量和水分利用效率。回归模型表明,春夏番茄的最佳施氮量为192.30 ~ 225.67 mm和205.93 ~ 243.43 kg ha - 1,秋冬番茄的最佳施氮量为162.00 ~ 181.18 mm和194.98 ~ 237.73 kg ha - 1。这些发现为节水农业实践和可持续温室番茄生产提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen Application Under Aerated Irrigation Mitigated Drought Stress by Improving Leaf Carbon and Nitrogen Reserves in Tomato
Nitrogen (N) application can improve drought tolerance and water use efficiency (WUE) in crops. Previous studies have shown that aerated irrigation improves crop nitrogen absorption and utilization. However, the mechanisms behind the interaction of water and nitrogen under aerated drip irrigation and its impact on crop WUE remain unclear. This study conducted a 2‐years greenhouse experiment with spring‐summer and autumn‐winter tomato to investigate the effects of water and nitrogen coupling on leaf carbon (C) and nitrogen content, photosynthetic characteristics, plant dry matter accumulation, yield, and WUE. The experiment included three irrigation levels (W1, 50% ETc; W2, 75% ETc; W3, 100% ETc) and three nitrogen application rates (N1, 0 kg ha−1; N2, 150 kg ha−1; N3, 250 kg ha−1). The results showed that increased nitrogen application and irrigation levels significantly increased leaf carbon and nitrogen content, net photosynthetic rate (Pn), and stomatal conductance (Gs) (p < 0.05). Under deficit irrigation, nitrogen application increased leaf carbon content by 2.17% and nitrogen content by 9.34%, improved leaf photosynthetic capacity, and increased Pn by 15.57% and Gs by 19.32%. The W2 treatment demonstrated more significant improvement compared to W1. The W3N3 treatment produced the highest plant dry matter accumulation for both tomato types, with no significant difference from W2N3 (p > 0.05). The W2N3 treatment produced the highest yield, 8.67%–9.13% higher than W3N3. The highest WUE occurred in W2N3 for spring‐summer tomato and W1N3 for autumn‐winter tomato. Although W1N3 had 1.02% higher WUE than W2N3, it had a 15.25% lower yield. Thus, W2N3 is recommended as the optimal water‐nitrogen management strategy for greenhouse tomato production. Correlation analysis revealed that leaf carbon and nitrogen contents positively correlated with Pn, plant dry matter accumulation, and yield, whereas the leaf ratio of carbon and nitrogen (C/N) negatively correlated with WUE, suggesting that leaf carbon and nitrogen contents regulate tomato WUE. Nitrogen application under deficit irrigation enhanced leaf carbon and nitrogen contents, photosynthetic capacity (Pn, Gs), plant dry matter accumulation, yield, and WUE. Regression models suggest that the optimal water and nitrogen application rates for greenhouse tomatoes are 192.30–225.67 mm and 205.93–243.43 kg ha−1 for spring‐summer tomato, and 162.00–181.18 mm and 194.98–237.73 kg ha−1 for autumn‐winter tomato. These findings provide a theoretical basis for water‐efficient agricultural practices and sustainable greenhouse tomato production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信