激光粉末床熔合制备ticn增强AlMgScZr复合材料的显微组织和力学分析:对三周期最小表面晶格结构的见解

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zijian Hu, Ansen Wang, Wenxin Yang, Wei Duan, Xiaonan Ni, Xin Deng, Jinyang Liu, Shanghua Wu
{"title":"激光粉末床熔合制备ticn增强AlMgScZr复合材料的显微组织和力学分析:对三周期最小表面晶格结构的见解","authors":"Zijian Hu, Ansen Wang, Wenxin Yang, Wei Duan, Xiaonan Ni, Xin Deng, Jinyang Liu, Shanghua Wu","doi":"10.1016/j.jmst.2025.04.051","DOIUrl":null,"url":null,"abstract":"The additive manufacturing of ceramic-reinforced AlMgScZr composites via laser powder bed fusion (LPBF) and their application in triply periodic minimal surface (TPMS) architectures remain underexplored, despite their potential for lightweight high-performance components. This research pioneers the integration of micron-scale TiCN particles into an AlMgScZr alloy through LPBF process, revealing critical microstructure-property relationships. The incorporation of TiCN fundamentally alters the consolidation dynamics of the AlMgScZr alloy matrix, promoting the transition from columnar to equiaxed grains of the matrix, and resulting in a superior matrix grain refinement. Post-aging treatment enhances the mechanical properties of 5 vol.% TiCN-AlMgScZr composite, achieving an ultimate tensile strength of 683 MPa, a yield strength of 654 MPa, and an elongation rate of 4.1%, which are among the highest values reported for LPBF processed aluminum matrix composites and alloys to date. Building on these findings, the study further assesses the compressive performance of TPMS structures fabricated from LPBFed 5 vol.% TiCN-AlMgScZr composite. This assessment combines experimental testing with Finite Element (FE) simulation, with a particular focus on a TPMS structure inspired by the Douglas fir (D-F structure). The results demonstrate that TiCN reinforcement markedly improves the compressive behavior of TPMS structures, with the D-F structure showing superior compressive strength compared to other TPMS structures. Additionally, the D-F structure fabricated from TiCN-AlMgScZr composite exhibits exceptional vibration damping capabilities. This study, by integrating material performance, structural design, and potential damping application, offers valuable insights into the fabrication of advanced aluminum matrix composites through additive manufacturing, contributing to the development of high-performance materials for industrial applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"69 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural and mechanical analysis of TiCN-reinforced AlMgScZr composites fabricated via laser powder bed fusion: Insights into triple periodic minimal surface lattice structures\",\"authors\":\"Zijian Hu, Ansen Wang, Wenxin Yang, Wei Duan, Xiaonan Ni, Xin Deng, Jinyang Liu, Shanghua Wu\",\"doi\":\"10.1016/j.jmst.2025.04.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The additive manufacturing of ceramic-reinforced AlMgScZr composites via laser powder bed fusion (LPBF) and their application in triply periodic minimal surface (TPMS) architectures remain underexplored, despite their potential for lightweight high-performance components. This research pioneers the integration of micron-scale TiCN particles into an AlMgScZr alloy through LPBF process, revealing critical microstructure-property relationships. The incorporation of TiCN fundamentally alters the consolidation dynamics of the AlMgScZr alloy matrix, promoting the transition from columnar to equiaxed grains of the matrix, and resulting in a superior matrix grain refinement. Post-aging treatment enhances the mechanical properties of 5 vol.% TiCN-AlMgScZr composite, achieving an ultimate tensile strength of 683 MPa, a yield strength of 654 MPa, and an elongation rate of 4.1%, which are among the highest values reported for LPBF processed aluminum matrix composites and alloys to date. Building on these findings, the study further assesses the compressive performance of TPMS structures fabricated from LPBFed 5 vol.% TiCN-AlMgScZr composite. This assessment combines experimental testing with Finite Element (FE) simulation, with a particular focus on a TPMS structure inspired by the Douglas fir (D-F structure). The results demonstrate that TiCN reinforcement markedly improves the compressive behavior of TPMS structures, with the D-F structure showing superior compressive strength compared to other TPMS structures. Additionally, the D-F structure fabricated from TiCN-AlMgScZr composite exhibits exceptional vibration damping capabilities. This study, by integrating material performance, structural design, and potential damping application, offers valuable insights into the fabrication of advanced aluminum matrix composites through additive manufacturing, contributing to the development of high-performance materials for industrial applications.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.04.051\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管陶瓷增强AlMgScZr复合材料具有轻质高性能部件的潜力,但通过激光粉末床熔融(LPBF)增材制造及其在三周期最小表面(TPMS)结构中的应用仍未得到充分探索。本研究率先通过LPBF工艺将微米尺度的TiCN颗粒集成到AlMgScZr合金中,揭示了关键的显微组织-性能关系。TiCN的加入从根本上改变了AlMgScZr合金基体的固结动力学,促进了基体从柱状晶向等轴晶的转变,从而使基体晶粒细化。后时效处理提高了5 vol.% TiCN-AlMgScZr复合材料的力学性能,达到了683 MPa的极限抗拉强度,654 MPa的屈服强度和4.1%的伸长率,这是迄今为止LPBF加工铝基复合材料和合金的最高数值之一。在这些发现的基础上,该研究进一步评估了由lpbfe5 vol.% TiCN-AlMgScZr复合材料制成的TPMS结构的压缩性能。该评估将实验测试与有限元(FE)模拟相结合,特别关注受花旗松(D-F结构)启发的TPMS结构。结果表明,TiCN加固显著改善了TPMS结构的抗压性能,其中D-F结构的抗压强度优于其他TPMS结构。此外,由TiCN-AlMgScZr复合材料制成的D-F结构具有出色的减振能力。本研究通过整合材料性能、结构设计和潜在的阻尼应用,为通过增材制造制造先进铝基复合材料提供了有价值的见解,为工业应用高性能材料的发展做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microstructural and mechanical analysis of TiCN-reinforced AlMgScZr composites fabricated via laser powder bed fusion: Insights into triple periodic minimal surface lattice structures

Microstructural and mechanical analysis of TiCN-reinforced AlMgScZr composites fabricated via laser powder bed fusion: Insights into triple periodic minimal surface lattice structures
The additive manufacturing of ceramic-reinforced AlMgScZr composites via laser powder bed fusion (LPBF) and their application in triply periodic minimal surface (TPMS) architectures remain underexplored, despite their potential for lightweight high-performance components. This research pioneers the integration of micron-scale TiCN particles into an AlMgScZr alloy through LPBF process, revealing critical microstructure-property relationships. The incorporation of TiCN fundamentally alters the consolidation dynamics of the AlMgScZr alloy matrix, promoting the transition from columnar to equiaxed grains of the matrix, and resulting in a superior matrix grain refinement. Post-aging treatment enhances the mechanical properties of 5 vol.% TiCN-AlMgScZr composite, achieving an ultimate tensile strength of 683 MPa, a yield strength of 654 MPa, and an elongation rate of 4.1%, which are among the highest values reported for LPBF processed aluminum matrix composites and alloys to date. Building on these findings, the study further assesses the compressive performance of TPMS structures fabricated from LPBFed 5 vol.% TiCN-AlMgScZr composite. This assessment combines experimental testing with Finite Element (FE) simulation, with a particular focus on a TPMS structure inspired by the Douglas fir (D-F structure). The results demonstrate that TiCN reinforcement markedly improves the compressive behavior of TPMS structures, with the D-F structure showing superior compressive strength compared to other TPMS structures. Additionally, the D-F structure fabricated from TiCN-AlMgScZr composite exhibits exceptional vibration damping capabilities. This study, by integrating material performance, structural design, and potential damping application, offers valuable insights into the fabrication of advanced aluminum matrix composites through additive manufacturing, contributing to the development of high-performance materials for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信