Qinxuan Cao, Jianning Feng, Kezhou Fan, Shuting Zhang, Jinzhong Zhang, Baixu Ma, Jie Xue, Xin Li, Kang Wang, Lizhi Tao, Aleksandr Sergeev, Ye Yang, Kam Sing Wong, Yong Huang, Haipeng Lu
{"title":"磁掺杂量子点中自旋交换俄歇过程实现了极电位光催化","authors":"Qinxuan Cao, Jianning Feng, Kezhou Fan, Shuting Zhang, Jinzhong Zhang, Baixu Ma, Jie Xue, Xin Li, Kang Wang, Lizhi Tao, Aleksandr Sergeev, Ye Yang, Kam Sing Wong, Yong Huang, Haipeng Lu","doi":"10.1038/s41467-025-60659-8","DOIUrl":null,"url":null,"abstract":"<p>Visible-light-absorbing semiconductor nanocrystals have shown great promise as photocatalysts for promoting photoredox chemistry. However, their utilization in organic synthesis remains considerably limited compared to small molecule photosensitizers. Recently, the generation of hot electrons from quantum-confined systems has emerged as a powerful means of photoreduction, yet the efficiencies remain limited under mild conditions. In this study, we present an efficient hot-electron generation system facilitated by the spin-exchange Auger process in Mn<sup>2+</sup>-doped CdS/ZnS quantum dots. These hot electrons can be effectively utilized in a wide range of organic reactions, such as the Birch reduction and reductive cleavage of C-Cl, C-Br, C-I, C-O, C-C, and N-S bonds. Notably, these reactions accommodate substrate reduction potentials as low as −3.4 V versus the saturated calomel electrode. Through two-photon excitation, we achieve the generation of a “super” photoreductant using visible-light irradiation power that is only 1% of that previously reported for molecular and quantum dot systems. By modulating the intensity of light output, the spin-exchange Auger process enables the on/off generation of hot electrons, allowing for programmable assembly-point cross-coupling cascades. Our findings demonstrate the potential of quantum-confined semiconductors in facilitating challenging organic transformations that were unattainable with molecular photocatalysts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme potential photocatalysis enabled by spin-exchange Auger processes in magnetic-doped quantum dots\",\"authors\":\"Qinxuan Cao, Jianning Feng, Kezhou Fan, Shuting Zhang, Jinzhong Zhang, Baixu Ma, Jie Xue, Xin Li, Kang Wang, Lizhi Tao, Aleksandr Sergeev, Ye Yang, Kam Sing Wong, Yong Huang, Haipeng Lu\",\"doi\":\"10.1038/s41467-025-60659-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visible-light-absorbing semiconductor nanocrystals have shown great promise as photocatalysts for promoting photoredox chemistry. However, their utilization in organic synthesis remains considerably limited compared to small molecule photosensitizers. Recently, the generation of hot electrons from quantum-confined systems has emerged as a powerful means of photoreduction, yet the efficiencies remain limited under mild conditions. In this study, we present an efficient hot-electron generation system facilitated by the spin-exchange Auger process in Mn<sup>2+</sup>-doped CdS/ZnS quantum dots. These hot electrons can be effectively utilized in a wide range of organic reactions, such as the Birch reduction and reductive cleavage of C-Cl, C-Br, C-I, C-O, C-C, and N-S bonds. Notably, these reactions accommodate substrate reduction potentials as low as −3.4 V versus the saturated calomel electrode. Through two-photon excitation, we achieve the generation of a “super” photoreductant using visible-light irradiation power that is only 1% of that previously reported for molecular and quantum dot systems. By modulating the intensity of light output, the spin-exchange Auger process enables the on/off generation of hot electrons, allowing for programmable assembly-point cross-coupling cascades. Our findings demonstrate the potential of quantum-confined semiconductors in facilitating challenging organic transformations that were unattainable with molecular photocatalysts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60659-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60659-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Extreme potential photocatalysis enabled by spin-exchange Auger processes in magnetic-doped quantum dots
Visible-light-absorbing semiconductor nanocrystals have shown great promise as photocatalysts for promoting photoredox chemistry. However, their utilization in organic synthesis remains considerably limited compared to small molecule photosensitizers. Recently, the generation of hot electrons from quantum-confined systems has emerged as a powerful means of photoreduction, yet the efficiencies remain limited under mild conditions. In this study, we present an efficient hot-electron generation system facilitated by the spin-exchange Auger process in Mn2+-doped CdS/ZnS quantum dots. These hot electrons can be effectively utilized in a wide range of organic reactions, such as the Birch reduction and reductive cleavage of C-Cl, C-Br, C-I, C-O, C-C, and N-S bonds. Notably, these reactions accommodate substrate reduction potentials as low as −3.4 V versus the saturated calomel electrode. Through two-photon excitation, we achieve the generation of a “super” photoreductant using visible-light irradiation power that is only 1% of that previously reported for molecular and quantum dot systems. By modulating the intensity of light output, the spin-exchange Auger process enables the on/off generation of hot electrons, allowing for programmable assembly-point cross-coupling cascades. Our findings demonstrate the potential of quantum-confined semiconductors in facilitating challenging organic transformations that were unattainable with molecular photocatalysts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.