单原子催化剂配位环境的研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Leilei Zhang, Xiaofeng Yang, Jian Lin, Xuning Li, Xiaoyan Liu, Botao Qiao, Aiqin Wang, Tao Zhang
{"title":"单原子催化剂配位环境的研究","authors":"Leilei Zhang, Xiaofeng Yang, Jian Lin, Xuning Li, Xiaoyan Liu, Botao Qiao, Aiqin Wang, Tao Zhang","doi":"10.1021/acs.accounts.5c00140","DOIUrl":null,"url":null,"abstract":"Single-atom catalysis has become one of the most active frontiers in catalysis in the past decade. This concept not only gives birth to a new kind of heterogeneous catalysts featuring well-defined isolated active sites and strong covalent (or electronic) metal–support interaction, which deliver unique catalytic activity, selectivity, and stability distinct from their nanoparticulate counterparts, but also together with the principles and concepts in history, reshapes our understanding of heterogeneous catalysis and drives the catalysis research from the nanoscale and subnanoscale to the more precise atomic scale.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"14 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Coordination Environment of Single-Atom Catalysts\",\"authors\":\"Leilei Zhang, Xiaofeng Yang, Jian Lin, Xuning Li, Xiaoyan Liu, Botao Qiao, Aiqin Wang, Tao Zhang\",\"doi\":\"10.1021/acs.accounts.5c00140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-atom catalysis has become one of the most active frontiers in catalysis in the past decade. This concept not only gives birth to a new kind of heterogeneous catalysts featuring well-defined isolated active sites and strong covalent (or electronic) metal–support interaction, which deliver unique catalytic activity, selectivity, and stability distinct from their nanoparticulate counterparts, but also together with the principles and concepts in history, reshapes our understanding of heterogeneous catalysis and drives the catalysis research from the nanoscale and subnanoscale to the more precise atomic scale.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.5c00140\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.5c00140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,单原子催化已成为催化领域最活跃的前沿之一。这一概念不仅产生了一种具有明确的分离活性位点和强共价(或电子)金属支持相互作用的新型异相催化剂,它提供了不同于纳米颗粒对应物的独特的催化活性、选择性和稳定性,而且还与历史上的原理和概念结合在一起,重塑了我们对多相催化的认识,推动催化研究从纳米尺度和亚纳米尺度向更精确的原子尺度发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Coordination Environment of Single-Atom Catalysts
Single-atom catalysis has become one of the most active frontiers in catalysis in the past decade. This concept not only gives birth to a new kind of heterogeneous catalysts featuring well-defined isolated active sites and strong covalent (or electronic) metal–support interaction, which deliver unique catalytic activity, selectivity, and stability distinct from their nanoparticulate counterparts, but also together with the principles and concepts in history, reshapes our understanding of heterogeneous catalysis and drives the catalysis research from the nanoscale and subnanoscale to the more precise atomic scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信