Pengfei Wang, Jiaxing Xu, Zhaoyuan Bai, Ruzhu Wang and Tingxian Li
{"title":"设计以太阳能为动力的下一代全天候高效大气集水系统","authors":"Pengfei Wang, Jiaxing Xu, Zhaoyuan Bai, Ruzhu Wang and Tingxian Li","doi":"10.1039/D5EE01454A","DOIUrl":null,"url":null,"abstract":"<p >The water crisis has emerged as one of the most severe threats to global sustainable development. The atmosphere contains approximately 13 000 trillion liters of water and serves as an accessible natural water source everywhere. Extracting water from ubiquitous air using solar energy is recognized as a transformative route to addressing water shortages. However, low energy efficiency and poor water productivity are the most critical obstacles to realizing efficient atmospheric water harvesting (AWH). This perspective emphasizes the importance of understanding the water-energy nexus in order to propel AWH innovation by maximizing water production while minimizing energy consumption. We analyze the challenges of conventional AWH technologies and propose next-generation solar-powered hybrid AWH (HAWH) paradigms by integrating complementary AWH mechanisms with synergistic energy utilization. Thermodynamic analysis demonstrates the greater global energy-saving potential and broader weather adaptability of HAWH compared to conventional AWH. Finally, we outline the future challenges and directions of HAWH for all-weather and efficient water harvesting from air.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 14","pages":" 7005-7022"},"PeriodicalIF":30.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing next-generation all-weather and efficient atmospheric water harvesting powered by solar energy†\",\"authors\":\"Pengfei Wang, Jiaxing Xu, Zhaoyuan Bai, Ruzhu Wang and Tingxian Li\",\"doi\":\"10.1039/D5EE01454A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The water crisis has emerged as one of the most severe threats to global sustainable development. The atmosphere contains approximately 13 000 trillion liters of water and serves as an accessible natural water source everywhere. Extracting water from ubiquitous air using solar energy is recognized as a transformative route to addressing water shortages. However, low energy efficiency and poor water productivity are the most critical obstacles to realizing efficient atmospheric water harvesting (AWH). This perspective emphasizes the importance of understanding the water-energy nexus in order to propel AWH innovation by maximizing water production while minimizing energy consumption. We analyze the challenges of conventional AWH technologies and propose next-generation solar-powered hybrid AWH (HAWH) paradigms by integrating complementary AWH mechanisms with synergistic energy utilization. Thermodynamic analysis demonstrates the greater global energy-saving potential and broader weather adaptability of HAWH compared to conventional AWH. Finally, we outline the future challenges and directions of HAWH for all-weather and efficient water harvesting from air.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 14\",\"pages\":\" 7005-7022\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee01454a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee01454a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing next-generation all-weather and efficient atmospheric water harvesting powered by solar energy†
The water crisis has emerged as one of the most severe threats to global sustainable development. The atmosphere contains approximately 13 000 trillion liters of water and serves as an accessible natural water source everywhere. Extracting water from ubiquitous air using solar energy is recognized as a transformative route to addressing water shortages. However, low energy efficiency and poor water productivity are the most critical obstacles to realizing efficient atmospheric water harvesting (AWH). This perspective emphasizes the importance of understanding the water-energy nexus in order to propel AWH innovation by maximizing water production while minimizing energy consumption. We analyze the challenges of conventional AWH technologies and propose next-generation solar-powered hybrid AWH (HAWH) paradigms by integrating complementary AWH mechanisms with synergistic energy utilization. Thermodynamic analysis demonstrates the greater global energy-saving potential and broader weather adaptability of HAWH compared to conventional AWH. Finally, we outline the future challenges and directions of HAWH for all-weather and efficient water harvesting from air.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).