{"title":"在纯镁基质上直接生长的纳米结构MgO对其体外腐蚀和生物活性的影响","authors":"Majid Shahsanaei, Masoud Atapour, Morteza Shamanian, Nastaran Farahbakhsh, Swathi N.V. Raghu, Torsten Kowald, Sybille Krauß, Seyedsina Hejazi, Shiva Mohajernia, Manuela S. Killian","doi":"10.1016/j.jma.2025.05.006","DOIUrl":null,"url":null,"abstract":"This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte, offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality. The surface was characterized before and after immersion testing using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium. Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid (SBF), surpassing that of microstructured MgO. Hydrogen evolution decreased from 912±38 µL cm<sup>-2</sup> for untreated Mg to 615±32 µL cm<sup>-2</sup> for the Mg/MgO nanostructure and 545±29 µL cm<sup>-2</sup> for the Mg/MgO/HA sample. These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection, improved biomineralization, reduced hemolysis and increased cell viability, and reduced H<sub>2</sub> generation.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"36 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of nanostructured MgO directly grown on pure magnesium substrate on its in vitro corrosion and bioactivity behaviour\",\"authors\":\"Majid Shahsanaei, Masoud Atapour, Morteza Shamanian, Nastaran Farahbakhsh, Swathi N.V. Raghu, Torsten Kowald, Sybille Krauß, Seyedsina Hejazi, Shiva Mohajernia, Manuela S. Killian\",\"doi\":\"10.1016/j.jma.2025.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte, offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality. The surface was characterized before and after immersion testing using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium. Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid (SBF), surpassing that of microstructured MgO. Hydrogen evolution decreased from 912±38 µL cm<sup>-2</sup> for untreated Mg to 615±32 µL cm<sup>-2</sup> for the Mg/MgO nanostructure and 545±29 µL cm<sup>-2</sup> for the Mg/MgO/HA sample. These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection, improved biomineralization, reduced hemolysis and increased cell viability, and reduced H<sub>2</sub> generation.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.05.006\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.05.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of nanostructured MgO directly grown on pure magnesium substrate on its in vitro corrosion and bioactivity behaviour
This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte, offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality. The surface was characterized before and after immersion testing using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium. Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid (SBF), surpassing that of microstructured MgO. Hydrogen evolution decreased from 912±38 µL cm-2 for untreated Mg to 615±32 µL cm-2 for the Mg/MgO nanostructure and 545±29 µL cm-2 for the Mg/MgO/HA sample. These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection, improved biomineralization, reduced hemolysis and increased cell viability, and reduced H2 generation.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.