Ying Gao, Hanxiao Bian, Hanqing Wang, Jingyu Wang, Bingbing Ye, Chi Zhang, Min Xu, Yu Pan, Zhiping Deng, Zhengguo Li, Kunsong Chen, Bo Zhang
{"title":"m6A解读子SlYTH1通过影响番茄果实中mRNA的稳定性和翻译来调控风味相关挥发物的生物合成","authors":"Ying Gao, Hanxiao Bian, Hanqing Wang, Jingyu Wang, Bingbing Ye, Chi Zhang, Min Xu, Yu Pan, Zhiping Deng, Zhengguo Li, Kunsong Chen, Bo Zhang","doi":"10.1093/plphys/kiaf245","DOIUrl":null,"url":null,"abstract":"N 6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification in eukaryotes, catalyzed by methyltransferases (writers), removed by demethylases (erasers), and recognized by binding proteins (readers). While previous studies have established the essential role of m6A homeostasis in regulating fruit ripening, the post-transcriptional mechanisms underlying m6A-mediated quality trait formation remain poorly understood. Following our recent discovery of a YT521B homology (YTH) domain-containing m6A reader gene, SlYTH2, as a translational repressor for the production of tomato (Solanum lycopersicum) aroma volatiles, we reveal here a distinct regulatory effect through knockout of SlYTH1, which specifically reduces flavor-related volatiles in tomato fruit without affecting the days from anthesis to fruit color break, ethylene production, or firmness. Notably, this finding contrasts with the role of SlYTH2, which negatively regulates fruit aroma, highlighting the opposing effects of SlYTH1 and SlYTH2 in modulating fruit aroma. Mechanistically, SlYTH1 binds to m6A-modified mRNA targets both in vitro and in vivo, performing dual roles in maintaining mRNA stability and promoting translation. Specifically, the loss of SlYTH1 function accelerated the decline in the transcript and protein levels of two key targets, SlBCAT1 and SlTNH1, which are essential for volatile biosynthesis. This study provides insights into the role of m6A modification in regulating fruit flavor quality during ripening. Furthermore, it identifies SlYTH1 as a potential genetic target for improving fruit flavor without altering the timing of ripening.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"478 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The m6A reader SlYTH1 regulates flavor-related volatiles biosynthesis via affecting mRNA stability and translation in tomato fruit\",\"authors\":\"Ying Gao, Hanxiao Bian, Hanqing Wang, Jingyu Wang, Bingbing Ye, Chi Zhang, Min Xu, Yu Pan, Zhiping Deng, Zhengguo Li, Kunsong Chen, Bo Zhang\",\"doi\":\"10.1093/plphys/kiaf245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N 6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification in eukaryotes, catalyzed by methyltransferases (writers), removed by demethylases (erasers), and recognized by binding proteins (readers). While previous studies have established the essential role of m6A homeostasis in regulating fruit ripening, the post-transcriptional mechanisms underlying m6A-mediated quality trait formation remain poorly understood. Following our recent discovery of a YT521B homology (YTH) domain-containing m6A reader gene, SlYTH2, as a translational repressor for the production of tomato (Solanum lycopersicum) aroma volatiles, we reveal here a distinct regulatory effect through knockout of SlYTH1, which specifically reduces flavor-related volatiles in tomato fruit without affecting the days from anthesis to fruit color break, ethylene production, or firmness. Notably, this finding contrasts with the role of SlYTH2, which negatively regulates fruit aroma, highlighting the opposing effects of SlYTH1 and SlYTH2 in modulating fruit aroma. Mechanistically, SlYTH1 binds to m6A-modified mRNA targets both in vitro and in vivo, performing dual roles in maintaining mRNA stability and promoting translation. Specifically, the loss of SlYTH1 function accelerated the decline in the transcript and protein levels of two key targets, SlBCAT1 and SlTNH1, which are essential for volatile biosynthesis. This study provides insights into the role of m6A modification in regulating fruit flavor quality during ripening. Furthermore, it identifies SlYTH1 as a potential genetic target for improving fruit flavor without altering the timing of ripening.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"478 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf245\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf245","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The m6A reader SlYTH1 regulates flavor-related volatiles biosynthesis via affecting mRNA stability and translation in tomato fruit
N 6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification in eukaryotes, catalyzed by methyltransferases (writers), removed by demethylases (erasers), and recognized by binding proteins (readers). While previous studies have established the essential role of m6A homeostasis in regulating fruit ripening, the post-transcriptional mechanisms underlying m6A-mediated quality trait formation remain poorly understood. Following our recent discovery of a YT521B homology (YTH) domain-containing m6A reader gene, SlYTH2, as a translational repressor for the production of tomato (Solanum lycopersicum) aroma volatiles, we reveal here a distinct regulatory effect through knockout of SlYTH1, which specifically reduces flavor-related volatiles in tomato fruit without affecting the days from anthesis to fruit color break, ethylene production, or firmness. Notably, this finding contrasts with the role of SlYTH2, which negatively regulates fruit aroma, highlighting the opposing effects of SlYTH1 and SlYTH2 in modulating fruit aroma. Mechanistically, SlYTH1 binds to m6A-modified mRNA targets both in vitro and in vivo, performing dual roles in maintaining mRNA stability and promoting translation. Specifically, the loss of SlYTH1 function accelerated the decline in the transcript and protein levels of two key targets, SlBCAT1 and SlTNH1, which are essential for volatile biosynthesis. This study provides insights into the role of m6A modification in regulating fruit flavor quality during ripening. Furthermore, it identifies SlYTH1 as a potential genetic target for improving fruit flavor without altering the timing of ripening.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.