Eryk J. Ratajczyk, Jonathan Bath, Petr Šulc, Jonathan P. K. Doye, Ard A. Louis, Andrew J. Turberfield
{"title":"碱基分布控制DNA-RNA链位移动力学","authors":"Eryk J. Ratajczyk, Jonathan Bath, Petr Šulc, Jonathan P. K. Doye, Ard A. Louis, Andrew J. Turberfield","doi":"10.1073/pnas.2416988122","DOIUrl":null,"url":null,"abstract":"DNA–RNA hybrid strand displacement underpins the function of many natural and engineered systems. Understanding and controlling factors affecting DNA–RNA strand displacement reactions is necessary to enable control of processes such as CRISPR-Cas9 gene editing. By combining multiscale modeling with strand displacement experiments, we show that the distribution of bases within the displacement domain has a very strong effect on reaction kinetics, a feature unique to DNA–RNA hybrid strand displacement. Merely by redistributing bases within a displacement domain of fixed base composition, we are able to design sequences whose reaction rates span more than four orders of magnitude. We extensively characterize this effect in reactions involving the invasion of dsDNA by an RNA strand, as well as the invasion of a hybrid duplex by a DNA strand. In all-DNA strand displacement reactions, we find a predictable but relatively weak sequence dependence, confirming that DNA–RNA strand displacement permits far more thermodynamic and kinetic control than its all-DNA counterpart. We show that oxNA, a recently introduced coarse-grained model of DNA–RNA hybrids, can reproduce trends in experimentally observed reaction rates. We also develop a simple kinetic model for predicting strand displacement rates. On the basis of these results, we argue that base distribution effects may play an important role in natural R-loop formation and in the function of the guide RNAs that direct CRISPR-Cas systems.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"34 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling DNA–RNA strand displacement kinetics with base distribution\",\"authors\":\"Eryk J. Ratajczyk, Jonathan Bath, Petr Šulc, Jonathan P. K. Doye, Ard A. Louis, Andrew J. Turberfield\",\"doi\":\"10.1073/pnas.2416988122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA–RNA hybrid strand displacement underpins the function of many natural and engineered systems. Understanding and controlling factors affecting DNA–RNA strand displacement reactions is necessary to enable control of processes such as CRISPR-Cas9 gene editing. By combining multiscale modeling with strand displacement experiments, we show that the distribution of bases within the displacement domain has a very strong effect on reaction kinetics, a feature unique to DNA–RNA hybrid strand displacement. Merely by redistributing bases within a displacement domain of fixed base composition, we are able to design sequences whose reaction rates span more than four orders of magnitude. We extensively characterize this effect in reactions involving the invasion of dsDNA by an RNA strand, as well as the invasion of a hybrid duplex by a DNA strand. In all-DNA strand displacement reactions, we find a predictable but relatively weak sequence dependence, confirming that DNA–RNA strand displacement permits far more thermodynamic and kinetic control than its all-DNA counterpart. We show that oxNA, a recently introduced coarse-grained model of DNA–RNA hybrids, can reproduce trends in experimentally observed reaction rates. We also develop a simple kinetic model for predicting strand displacement rates. On the basis of these results, we argue that base distribution effects may play an important role in natural R-loop formation and in the function of the guide RNAs that direct CRISPR-Cas systems.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2416988122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2416988122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Controlling DNA–RNA strand displacement kinetics with base distribution
DNA–RNA hybrid strand displacement underpins the function of many natural and engineered systems. Understanding and controlling factors affecting DNA–RNA strand displacement reactions is necessary to enable control of processes such as CRISPR-Cas9 gene editing. By combining multiscale modeling with strand displacement experiments, we show that the distribution of bases within the displacement domain has a very strong effect on reaction kinetics, a feature unique to DNA–RNA hybrid strand displacement. Merely by redistributing bases within a displacement domain of fixed base composition, we are able to design sequences whose reaction rates span more than four orders of magnitude. We extensively characterize this effect in reactions involving the invasion of dsDNA by an RNA strand, as well as the invasion of a hybrid duplex by a DNA strand. In all-DNA strand displacement reactions, we find a predictable but relatively weak sequence dependence, confirming that DNA–RNA strand displacement permits far more thermodynamic and kinetic control than its all-DNA counterpart. We show that oxNA, a recently introduced coarse-grained model of DNA–RNA hybrids, can reproduce trends in experimentally observed reaction rates. We also develop a simple kinetic model for predicting strand displacement rates. On the basis of these results, we argue that base distribution effects may play an important role in natural R-loop formation and in the function of the guide RNAs that direct CRISPR-Cas systems.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.