上位调节心脏肥厚的遗传控制。

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Qianru Wang, Tiffany M Tang, Michelle Youlton, Chad S Weldy, Ana M Kenney, Omer Ronen, J Weston Hughes, Elizabeth T Chin, Shirley C Sutton, Abhineet Agarwal, Xiao Li, Merle Behr, Karl Kumbier, Christine S Moravec, W H Wilson Tang, Kenneth B Margulies, Thomas P Cappola, Atul J Butte, Rima Arnaout, James B Brown, James R Priest, Victoria N Parikh, Bin Yu, Euan A Ashley
{"title":"上位调节心脏肥厚的遗传控制。","authors":"Qianru Wang, Tiffany M Tang, Michelle Youlton, Chad S Weldy, Ana M Kenney, Omer Ronen, J Weston Hughes, Elizabeth T Chin, Shirley C Sutton, Abhineet Agarwal, Xiao Li, Merle Behr, Karl Kumbier, Christine S Moravec, W H Wilson Tang, Kenneth B Margulies, Thomas P Cappola, Atul J Butte, Rima Arnaout, James B Brown, James R Priest, Victoria N Parikh, Bin Yu, Euan A Ashley","doi":"10.1038/s44161-025-00656-8","DOIUrl":null,"url":null,"abstract":"<p><p>Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, using deep learning-derived left ventricular mass estimates from 29,661 UK Biobank cardiac magnetic resonance images. We report epistatic variants near CCDC141, IGF1R, TTN and TNKS, identifying loci deemed insignificant in genome-wide association studies. Functional genomic and integrative enrichment analyses reveal that genes mapped from these loci share biological process gene ontologies and myogenic regulatory factors. Transcriptomic network analyses using 313 human hearts demonstrate strong co-expression correlations among these genes in healthy hearts, with significantly reduced connectivity in failing hearts. To assess causality, RNA silencing in human induced pluripotent stem cell-derived cardiomyocytes, combined with novel microfluidic single-cell morphology analysis, confirms that cardiomyocyte hypertrophy is nonadditively modifiable by interactions between CCDC141, TTN and IGF1R. Our results expand the scope of cardiac genetic regulation to epistasis.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epistasis regulates genetic control of cardiac hypertrophy.\",\"authors\":\"Qianru Wang, Tiffany M Tang, Michelle Youlton, Chad S Weldy, Ana M Kenney, Omer Ronen, J Weston Hughes, Elizabeth T Chin, Shirley C Sutton, Abhineet Agarwal, Xiao Li, Merle Behr, Karl Kumbier, Christine S Moravec, W H Wilson Tang, Kenneth B Margulies, Thomas P Cappola, Atul J Butte, Rima Arnaout, James B Brown, James R Priest, Victoria N Parikh, Bin Yu, Euan A Ashley\",\"doi\":\"10.1038/s44161-025-00656-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, using deep learning-derived left ventricular mass estimates from 29,661 UK Biobank cardiac magnetic resonance images. We report epistatic variants near CCDC141, IGF1R, TTN and TNKS, identifying loci deemed insignificant in genome-wide association studies. Functional genomic and integrative enrichment analyses reveal that genes mapped from these loci share biological process gene ontologies and myogenic regulatory factors. Transcriptomic network analyses using 313 human hearts demonstrate strong co-expression correlations among these genes in healthy hearts, with significantly reduced connectivity in failing hearts. To assess causality, RNA silencing in human induced pluripotent stem cell-derived cardiomyocytes, combined with novel microfluidic single-cell morphology analysis, confirms that cardiomyocyte hypertrophy is nonadditively modifiable by interactions between CCDC141, TTN and IGF1R. Our results expand the scope of cardiac genetic regulation to epistasis.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-025-00656-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00656-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

虽然遗传变异效应通常是非加性的相互作用,但揭示上位性的策略仍处于起步阶段。在这里,我们开发了低信号签名迭代随机森林来阐明心脏肥厚的复杂遗传结构,使用来自29,661英国生物银行心脏磁共振图像的深度学习衍生的左心室质量估计。我们报告了CCDC141、IGF1R、TTN和TNKS附近的遗传变异,确定了在全基因组关联研究中被认为不重要的位点。功能基因组和整合富集分析显示,从这些位点定位的基因共享生物过程基因本体和肌生成调节因子。使用313个人类心脏的转录组网络分析表明,这些基因在健康心脏中具有很强的共表达相关性,而在衰竭心脏中显著降低了连通性。为了评估因果关系,RNA沉默在人类诱导的多能干细胞衍生的心肌细胞中,结合新的微流控单细胞形态学分析,证实心肌细胞肥大可通过CCDC141、TTN和IGF1R之间的相互作用而非加性地改变。我们的研究结果将心脏遗传调控的范围扩大到上位性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epistasis regulates genetic control of cardiac hypertrophy.

Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, using deep learning-derived left ventricular mass estimates from 29,661 UK Biobank cardiac magnetic resonance images. We report epistatic variants near CCDC141, IGF1R, TTN and TNKS, identifying loci deemed insignificant in genome-wide association studies. Functional genomic and integrative enrichment analyses reveal that genes mapped from these loci share biological process gene ontologies and myogenic regulatory factors. Transcriptomic network analyses using 313 human hearts demonstrate strong co-expression correlations among these genes in healthy hearts, with significantly reduced connectivity in failing hearts. To assess causality, RNA silencing in human induced pluripotent stem cell-derived cardiomyocytes, combined with novel microfluidic single-cell morphology analysis, confirms that cardiomyocyte hypertrophy is nonadditively modifiable by interactions between CCDC141, TTN and IGF1R. Our results expand the scope of cardiac genetic regulation to epistasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信