{"title":"基于TD变压器的高速铁路路基沉降预警方法。","authors":"Wen Kebing, Liang Qinghuai","doi":"10.1038/s41598-025-05067-0","DOIUrl":null,"url":null,"abstract":"<p><p>During high speed railway construction, shield-tunnel undercrossing frequently induces subgrade settlement, which threatens project safety and progress. Existing settlement monitoring methods struggle to provide timely early warnings due to unclear data features and inadequate long-term dependency modeling.To address this, we propose a settlement early warning method for high-speed railway subgrades based on TD Transformer. Firstly, we utilize temporal-spatial enhanced attention (TSEA) for feature extraction from high-speed railway settlement data, effectively resolving the problem of vague features post-extraction. Secondly, dynamic global temporal attention (DGTA) is employed to dynamically capture and represent the long-term dependencies of settlement data. Experimental results demonstrate that TD Transformer achieves Accuracy, Precision, Recall, and F1-Score of 93.39%, 93.10%, 93.40%, and 93.24%, respectively, outperforming other advanced settlement early warning methods for high-speed railway subgrade with relative improvements of 1.24%, 1.3%, 1.3%, and 1.27%.This method effectively forecasts subgrade settlement and exhibits significant superiority in the task of multi-factor settlement early warning for high-speed railway subgrades.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19746"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141426/pdf/","citationCount":"0","resultStr":"{\"title\":\"Settlement early warning method for high speed railway subgrades based on TD Transformer.\",\"authors\":\"Wen Kebing, Liang Qinghuai\",\"doi\":\"10.1038/s41598-025-05067-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During high speed railway construction, shield-tunnel undercrossing frequently induces subgrade settlement, which threatens project safety and progress. Existing settlement monitoring methods struggle to provide timely early warnings due to unclear data features and inadequate long-term dependency modeling.To address this, we propose a settlement early warning method for high-speed railway subgrades based on TD Transformer. Firstly, we utilize temporal-spatial enhanced attention (TSEA) for feature extraction from high-speed railway settlement data, effectively resolving the problem of vague features post-extraction. Secondly, dynamic global temporal attention (DGTA) is employed to dynamically capture and represent the long-term dependencies of settlement data. Experimental results demonstrate that TD Transformer achieves Accuracy, Precision, Recall, and F1-Score of 93.39%, 93.10%, 93.40%, and 93.24%, respectively, outperforming other advanced settlement early warning methods for high-speed railway subgrade with relative improvements of 1.24%, 1.3%, 1.3%, and 1.27%.This method effectively forecasts subgrade settlement and exhibits significant superiority in the task of multi-factor settlement early warning for high-speed railway subgrades.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19746\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-05067-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-05067-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Settlement early warning method for high speed railway subgrades based on TD Transformer.
During high speed railway construction, shield-tunnel undercrossing frequently induces subgrade settlement, which threatens project safety and progress. Existing settlement monitoring methods struggle to provide timely early warnings due to unclear data features and inadequate long-term dependency modeling.To address this, we propose a settlement early warning method for high-speed railway subgrades based on TD Transformer. Firstly, we utilize temporal-spatial enhanced attention (TSEA) for feature extraction from high-speed railway settlement data, effectively resolving the problem of vague features post-extraction. Secondly, dynamic global temporal attention (DGTA) is employed to dynamically capture and represent the long-term dependencies of settlement data. Experimental results demonstrate that TD Transformer achieves Accuracy, Precision, Recall, and F1-Score of 93.39%, 93.10%, 93.40%, and 93.24%, respectively, outperforming other advanced settlement early warning methods for high-speed railway subgrade with relative improvements of 1.24%, 1.3%, 1.3%, and 1.27%.This method effectively forecasts subgrade settlement and exhibits significant superiority in the task of multi-factor settlement early warning for high-speed railway subgrades.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.