基于TD变压器的高速铁路路基沉降预警方法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wen Kebing, Liang Qinghuai
{"title":"基于TD变压器的高速铁路路基沉降预警方法。","authors":"Wen Kebing, Liang Qinghuai","doi":"10.1038/s41598-025-05067-0","DOIUrl":null,"url":null,"abstract":"<p><p>During high speed railway construction, shield-tunnel undercrossing frequently induces subgrade settlement, which threatens project safety and progress. Existing settlement monitoring methods struggle to provide timely early warnings due to unclear data features and inadequate long-term dependency modeling.To address this, we propose a settlement early warning method for high-speed railway subgrades based on TD Transformer. Firstly, we utilize temporal-spatial enhanced attention (TSEA) for feature extraction from high-speed railway settlement data, effectively resolving the problem of vague features post-extraction. Secondly, dynamic global temporal attention (DGTA) is employed to dynamically capture and represent the long-term dependencies of settlement data. Experimental results demonstrate that TD Transformer achieves Accuracy, Precision, Recall, and F1-Score of 93.39%, 93.10%, 93.40%, and 93.24%, respectively, outperforming other advanced settlement early warning methods for high-speed railway subgrade with relative improvements of 1.24%, 1.3%, 1.3%, and 1.27%.This method effectively forecasts subgrade settlement and exhibits significant superiority in the task of multi-factor settlement early warning for high-speed railway subgrades.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19746"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141426/pdf/","citationCount":"0","resultStr":"{\"title\":\"Settlement early warning method for high speed railway subgrades based on TD Transformer.\",\"authors\":\"Wen Kebing, Liang Qinghuai\",\"doi\":\"10.1038/s41598-025-05067-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During high speed railway construction, shield-tunnel undercrossing frequently induces subgrade settlement, which threatens project safety and progress. Existing settlement monitoring methods struggle to provide timely early warnings due to unclear data features and inadequate long-term dependency modeling.To address this, we propose a settlement early warning method for high-speed railway subgrades based on TD Transformer. Firstly, we utilize temporal-spatial enhanced attention (TSEA) for feature extraction from high-speed railway settlement data, effectively resolving the problem of vague features post-extraction. Secondly, dynamic global temporal attention (DGTA) is employed to dynamically capture and represent the long-term dependencies of settlement data. Experimental results demonstrate that TD Transformer achieves Accuracy, Precision, Recall, and F1-Score of 93.39%, 93.10%, 93.40%, and 93.24%, respectively, outperforming other advanced settlement early warning methods for high-speed railway subgrade with relative improvements of 1.24%, 1.3%, 1.3%, and 1.27%.This method effectively forecasts subgrade settlement and exhibits significant superiority in the task of multi-factor settlement early warning for high-speed railway subgrades.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19746\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-05067-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-05067-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在高速铁路施工中,盾构隧道下穿工程经常引起路基沉降,威胁着工程的安全和进度。现有沉降监测方法由于数据特征不明确,长期依赖关系建模不充分,难以提供及时的预警。针对这一问题,提出了一种基于TD变压器的高速铁路路基沉降预警方法。首先,利用时空增强注意(temporal-spatial enhanced attention, TSEA)对高速铁路沉降数据进行特征提取,有效解决了特征提取后的模糊问题;其次,采用动态全局时间关注(DGTA)方法动态捕获和表示沉降数据的长期依赖关系。实验结果表明,TD Transformer的准确率、精密度、召回率和F1-Score分别达到93.39%、93.10%、93.40%和93.24%,优于其他高速铁路路基沉降超前预警方法,相对提高1.24%、1.3%、1.3%和1.27%。该方法能有效地预测路基沉降,在高速铁路路基多因素沉降预警任务中具有显著的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Settlement early warning method for high speed railway subgrades based on TD Transformer.

Settlement early warning method for high speed railway subgrades based on TD Transformer.

Settlement early warning method for high speed railway subgrades based on TD Transformer.

Settlement early warning method for high speed railway subgrades based on TD Transformer.

During high speed railway construction, shield-tunnel undercrossing frequently induces subgrade settlement, which threatens project safety and progress. Existing settlement monitoring methods struggle to provide timely early warnings due to unclear data features and inadequate long-term dependency modeling.To address this, we propose a settlement early warning method for high-speed railway subgrades based on TD Transformer. Firstly, we utilize temporal-spatial enhanced attention (TSEA) for feature extraction from high-speed railway settlement data, effectively resolving the problem of vague features post-extraction. Secondly, dynamic global temporal attention (DGTA) is employed to dynamically capture and represent the long-term dependencies of settlement data. Experimental results demonstrate that TD Transformer achieves Accuracy, Precision, Recall, and F1-Score of 93.39%, 93.10%, 93.40%, and 93.24%, respectively, outperforming other advanced settlement early warning methods for high-speed railway subgrade with relative improvements of 1.24%, 1.3%, 1.3%, and 1.27%.This method effectively forecasts subgrade settlement and exhibits significant superiority in the task of multi-factor settlement early warning for high-speed railway subgrades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信