gnn在肿瘤医学图像分割方面超越了变压器。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Huimin Xiao, Guanghua Yang, Zhuocheng Li, Changhua Yi
{"title":"gnn在肿瘤医学图像分割方面超越了变压器。","authors":"Huimin Xiao, Guanghua Yang, Zhuocheng Li, Changhua Yi","doi":"10.1038/s41598-025-00002-9","DOIUrl":null,"url":null,"abstract":"<p><p>To assess the suitability of Transformer-based architectures for medical image segmentation and investigate the potential advantages of Graph Neural Networks (GNNs) in this domain. We analyze the limitations of the Transformer, which models medical images as sequences of image patches, limiting its flexibility in capturing complex and irregular tumor structures. To address it, we propose U-GNN, a pure GNN-based U-shaped architecture designed for medical image segmentation. U-GNN retains the U-Net-inspired inductive bias while leveraging GNNs' topological modeling capabilities. The architecture consists of Vision GNN blocks stacked into a U-shaped structure. Additionally, we introduce the concept of multi-order similarity and propose a zero-computation-cost approach to incorporate higher-order similarity in graph construction. Each Vision GNN block segments the image into patch nodes, constructs multi-order similarity graphs, and aggregates node features via multi-order node information aggregation. Experimental evaluations on multi-organ and cardiac segmentation datasets demonstrate that U-GNN significantly outperforms existing CNN- and Transformer-based models. U-GNN achieves a 6% improvement in Dice Similarity Coefficient (DSC) and an 18% reduction in Hausdorff Distance (HD) compared to state-of-the-art methods. The source code will be released upon paper acceptance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19842"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141428/pdf/","citationCount":"0","resultStr":"{\"title\":\"GNNs surpass transformers in tumor medical image segmentation.\",\"authors\":\"Huimin Xiao, Guanghua Yang, Zhuocheng Li, Changhua Yi\",\"doi\":\"10.1038/s41598-025-00002-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To assess the suitability of Transformer-based architectures for medical image segmentation and investigate the potential advantages of Graph Neural Networks (GNNs) in this domain. We analyze the limitations of the Transformer, which models medical images as sequences of image patches, limiting its flexibility in capturing complex and irregular tumor structures. To address it, we propose U-GNN, a pure GNN-based U-shaped architecture designed for medical image segmentation. U-GNN retains the U-Net-inspired inductive bias while leveraging GNNs' topological modeling capabilities. The architecture consists of Vision GNN blocks stacked into a U-shaped structure. Additionally, we introduce the concept of multi-order similarity and propose a zero-computation-cost approach to incorporate higher-order similarity in graph construction. Each Vision GNN block segments the image into patch nodes, constructs multi-order similarity graphs, and aggregates node features via multi-order node information aggregation. Experimental evaluations on multi-organ and cardiac segmentation datasets demonstrate that U-GNN significantly outperforms existing CNN- and Transformer-based models. U-GNN achieves a 6% improvement in Dice Similarity Coefficient (DSC) and an 18% reduction in Hausdorff Distance (HD) compared to state-of-the-art methods. The source code will be released upon paper acceptance.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19842\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-00002-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-00002-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

评估基于变压器的医学图像分割架构的适用性,并研究图神经网络(gnn)在该领域的潜在优势。我们分析了Transformer的局限性,它将医学图像建模为图像补丁序列,限制了它在捕获复杂和不规则肿瘤结构方面的灵活性。为了解决这个问题,我们提出了U-GNN,一种纯粹基于gnn的u形架构,用于医学图像分割。U-GNN保留了u - net启发的归纳偏置,同时利用了gnn的拓扑建模能力。该架构由堆叠成u形结构的视觉GNN块组成。此外,我们引入了多阶相似度的概念,并提出了一种零计算成本的方法来将高阶相似度纳入图的构造中。每个Vision GNN块将图像分割成patch节点,构建多阶相似图,通过多阶节点信息聚合聚合节点特征。在多器官和心脏分割数据集上的实验评估表明,U-GNN显著优于现有的基于CNN和transformer的模型。与最先进的方法相比,U-GNN在骰子相似系数(DSC)方面提高了6%,在豪斯多夫距离(HD)方面降低了18%。论文通过后将发布源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GNNs surpass transformers in tumor medical image segmentation.

GNNs surpass transformers in tumor medical image segmentation.

GNNs surpass transformers in tumor medical image segmentation.

GNNs surpass transformers in tumor medical image segmentation.

To assess the suitability of Transformer-based architectures for medical image segmentation and investigate the potential advantages of Graph Neural Networks (GNNs) in this domain. We analyze the limitations of the Transformer, which models medical images as sequences of image patches, limiting its flexibility in capturing complex and irregular tumor structures. To address it, we propose U-GNN, a pure GNN-based U-shaped architecture designed for medical image segmentation. U-GNN retains the U-Net-inspired inductive bias while leveraging GNNs' topological modeling capabilities. The architecture consists of Vision GNN blocks stacked into a U-shaped structure. Additionally, we introduce the concept of multi-order similarity and propose a zero-computation-cost approach to incorporate higher-order similarity in graph construction. Each Vision GNN block segments the image into patch nodes, constructs multi-order similarity graphs, and aggregates node features via multi-order node information aggregation. Experimental evaluations on multi-organ and cardiac segmentation datasets demonstrate that U-GNN significantly outperforms existing CNN- and Transformer-based models. U-GNN achieves a 6% improvement in Dice Similarity Coefficient (DSC) and an 18% reduction in Hausdorff Distance (HD) compared to state-of-the-art methods. The source code will be released upon paper acceptance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信