Divya Joshi, Alexandra Hruby, Julius P A Dewald, Carson Ingo
{"title":"利用弥散张量成像定量分析偏瘫性脑瘫患者前臂屈肌的结构特征。","authors":"Divya Joshi, Alexandra Hruby, Julius P A Dewald, Carson Ingo","doi":"10.14814/phy2.70404","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated diffusion tensor imaging (DTI) derived macro- and micro-structural musculoskeletal adaptations in forearm flexor muscles in individuals with hemiparetic cerebral palsy (HCP) and typically developing (TD) individuals, and their relationship to reduced grip strength. In 14 individuals with HCP and 16 TD individuals, T1-weighted and diffusion-weighted magnetic resonance images of both forearms were acquired, and maximum grip strength was measured. In two forearm flexors, muscle volume, DTI-based diffusivity metrics, and probabilistic tractography derived fascicle architecture was estimated. Linear mixed-effects models evaluated interlimb differences in structural parameters and their impact on grip strength. In the HCP group, paretic muscles showed significant reductions in volume, diffusivity values, fascicle lengths, and physiological cross-sectional area as compared to nonparetic forearm and TD participants. Furthermore, reduced muscle volume and diffusivity together explained 62% of the grip strength deficit. These findings demonstrate that decreased muscle volume and altered microstructure, as indicated by reduced diffusivity, contribute significantly to functional impairments in HCP. DTI-based diffusivity metrics non-invasively reveal crucial insights into pathophysiological changes in muscle tissue, such as muscle atrophy and fibrosis. Future therapies should focus on both muscle macro- and micro-structural adaptations as targets to improve motor function in HCP.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 11","pages":"e70404"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying structural properties of forearm flexor muscles in individuals with hemiparetic cerebral palsy using diffusion tensor imaging.\",\"authors\":\"Divya Joshi, Alexandra Hruby, Julius P A Dewald, Carson Ingo\",\"doi\":\"10.14814/phy2.70404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated diffusion tensor imaging (DTI) derived macro- and micro-structural musculoskeletal adaptations in forearm flexor muscles in individuals with hemiparetic cerebral palsy (HCP) and typically developing (TD) individuals, and their relationship to reduced grip strength. In 14 individuals with HCP and 16 TD individuals, T1-weighted and diffusion-weighted magnetic resonance images of both forearms were acquired, and maximum grip strength was measured. In two forearm flexors, muscle volume, DTI-based diffusivity metrics, and probabilistic tractography derived fascicle architecture was estimated. Linear mixed-effects models evaluated interlimb differences in structural parameters and their impact on grip strength. In the HCP group, paretic muscles showed significant reductions in volume, diffusivity values, fascicle lengths, and physiological cross-sectional area as compared to nonparetic forearm and TD participants. Furthermore, reduced muscle volume and diffusivity together explained 62% of the grip strength deficit. These findings demonstrate that decreased muscle volume and altered microstructure, as indicated by reduced diffusivity, contribute significantly to functional impairments in HCP. DTI-based diffusivity metrics non-invasively reveal crucial insights into pathophysiological changes in muscle tissue, such as muscle atrophy and fibrosis. Future therapies should focus on both muscle macro- and micro-structural adaptations as targets to improve motor function in HCP.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 11\",\"pages\":\"e70404\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Quantifying structural properties of forearm flexor muscles in individuals with hemiparetic cerebral palsy using diffusion tensor imaging.
This study investigated diffusion tensor imaging (DTI) derived macro- and micro-structural musculoskeletal adaptations in forearm flexor muscles in individuals with hemiparetic cerebral palsy (HCP) and typically developing (TD) individuals, and their relationship to reduced grip strength. In 14 individuals with HCP and 16 TD individuals, T1-weighted and diffusion-weighted magnetic resonance images of both forearms were acquired, and maximum grip strength was measured. In two forearm flexors, muscle volume, DTI-based diffusivity metrics, and probabilistic tractography derived fascicle architecture was estimated. Linear mixed-effects models evaluated interlimb differences in structural parameters and their impact on grip strength. In the HCP group, paretic muscles showed significant reductions in volume, diffusivity values, fascicle lengths, and physiological cross-sectional area as compared to nonparetic forearm and TD participants. Furthermore, reduced muscle volume and diffusivity together explained 62% of the grip strength deficit. These findings demonstrate that decreased muscle volume and altered microstructure, as indicated by reduced diffusivity, contribute significantly to functional impairments in HCP. DTI-based diffusivity metrics non-invasively reveal crucial insights into pathophysiological changes in muscle tissue, such as muscle atrophy and fibrosis. Future therapies should focus on both muscle macro- and micro-structural adaptations as targets to improve motor function in HCP.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.