Jiaqi Dong, Jingyi Wei, Hongwei Tong, Xiaohua Shi, Menghui Yuan, Yiwei Cao, Mohammed A El-Magd, Qiang Chen, Hongxin Zhang, Peng Yuan, Jiao Mu
{"title":"EXPRESS:昼夜节律基因NPAS2减轻cfa诱导的小鼠炎性疼痛的热伤害致敏。","authors":"Jiaqi Dong, Jingyi Wei, Hongwei Tong, Xiaohua Shi, Menghui Yuan, Yiwei Cao, Mohammed A El-Magd, Qiang Chen, Hongxin Zhang, Peng Yuan, Jiao Mu","doi":"10.1177/17448069251351045","DOIUrl":null,"url":null,"abstract":"<p><p>Pain, particularly chronic pain, is a major reason patients seek physical therapy. Inflammation plays a crucial role in both the development and persistence of chronic pain. Neuronal PAS domain protein 2 (NPAS2), a core circadian transcriptional regulator, has been implicated in modulating pain-related stress responses. In this study, we first examined NPAS2 expression in nociceptive-sensitized mice following complete Freund's adjuvant (CFA) administration. We then systematically investigated the effects of CFA on astrocyte activation and inflammatory factor release in NPAS2 knockout (KO) mice. Our results demonstrated that NPAS2 deletion did not alter baseline pain thresholds under normal physiological conditions. However, in CFA-injected mice, NPAS2 KO significantly lowered mechanical and thermal pain thresholds in 50% of subjects, leading to enhanced nociceptive sensitization. This effect may be attributed to the promotion of astrocyte activation and the upregulation of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, and NF-κB. These findings highlight NPAS2 as a potential prognostic biomarker for pain chronification and a promising therapeutic target for biologically tailored pain interventions.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251351045"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circadian gene NPAS2 modulates pain sensitization in CFA-induced inflammatory pain model.\",\"authors\":\"Jiaqi Dong, Jingyi Wei, Hongwei Tong, Xiaohua Shi, Menghui Yuan, Yiwei Cao, Mohammed A El-Magd, Qiang Chen, Hongxin Zhang, Peng Yuan, Jiao Mu\",\"doi\":\"10.1177/17448069251351045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pain, particularly chronic pain, is a major reason patients seek physical therapy. Inflammation plays a crucial role in both the development and persistence of chronic pain. Neuronal PAS domain protein 2 (NPAS2), a core circadian transcriptional regulator, has been implicated in modulating pain-related stress responses. In this study, we first examined NPAS2 expression in nociceptive-sensitized mice following complete Freund's adjuvant (CFA) administration. We then systematically investigated the effects of CFA on astrocyte activation and inflammatory factor release in NPAS2 knockout (KO) mice. Our results demonstrated that NPAS2 deletion did not alter baseline pain thresholds under normal physiological conditions. However, in CFA-injected mice, NPAS2 KO significantly lowered mechanical and thermal pain thresholds in 50% of subjects, leading to enhanced nociceptive sensitization. This effect may be attributed to the promotion of astrocyte activation and the upregulation of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, and NF-κB. These findings highlight NPAS2 as a potential prognostic biomarker for pain chronification and a promising therapeutic target for biologically tailored pain interventions.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":\" \",\"pages\":\"17448069251351045\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069251351045\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069251351045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Pain, particularly chronic pain, is a major reason patients seek physical therapy. Inflammation plays a crucial role in both the development and persistence of chronic pain. Neuronal PAS domain protein 2 (NPAS2), a core circadian transcriptional regulator, has been implicated in modulating pain-related stress responses. In this study, we first examined NPAS2 expression in nociceptive-sensitized mice following complete Freund's adjuvant (CFA) administration. We then systematically investigated the effects of CFA on astrocyte activation and inflammatory factor release in NPAS2 knockout (KO) mice. Our results demonstrated that NPAS2 deletion did not alter baseline pain thresholds under normal physiological conditions. However, in CFA-injected mice, NPAS2 KO significantly lowered mechanical and thermal pain thresholds in 50% of subjects, leading to enhanced nociceptive sensitization. This effect may be attributed to the promotion of astrocyte activation and the upregulation of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, and NF-κB. These findings highlight NPAS2 as a potential prognostic biomarker for pain chronification and a promising therapeutic target for biologically tailored pain interventions.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.