Krakencoder:一个统一的脑连接体翻译和融合工具。

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-07-01 Epub Date: 2025-06-05 DOI:10.1038/s41592-025-02706-2
Keith W Jamison, Zijin Gu, Qinxin Wang, Ceren Tozlu, Mert R Sabuncu, Amy Kuceyeski
{"title":"Krakencoder:一个统一的脑连接体翻译和融合工具。","authors":"Keith W Jamison, Zijin Gu, Qinxin Wang, Ceren Tozlu, Mert R Sabuncu, Amy Kuceyeski","doi":"10.1038/s41592-025-02706-2","DOIUrl":null,"url":null,"abstract":"<p><p>Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here, we present the Krakencoder, a joint connectome mapping tool that simultaneously bidirectionally translates between structural and functional connectivity, and between different atlases and processing choices via a common latent representation. These mappings demonstrate exceptional accuracy and individual-level identifiability; the mapping between structural and functional connectivity has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This fusion representation better reflects familial relatedness, preserves age- and sex-relevant information, and enhances cognition-relevant information. The Krakencoder can be applied, without retraining, to new out-of-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a notable leap forward in capturing the relationship between multimodal brain connectomes in an individualized, behaviorally and demographically relevant way.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1583-1592"},"PeriodicalIF":32.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240824/pdf/","citationCount":"0","resultStr":"{\"title\":\"Krakencoder: a unified brain connectome translation and fusion tool.\",\"authors\":\"Keith W Jamison, Zijin Gu, Qinxin Wang, Ceren Tozlu, Mert R Sabuncu, Amy Kuceyeski\",\"doi\":\"10.1038/s41592-025-02706-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here, we present the Krakencoder, a joint connectome mapping tool that simultaneously bidirectionally translates between structural and functional connectivity, and between different atlases and processing choices via a common latent representation. These mappings demonstrate exceptional accuracy and individual-level identifiability; the mapping between structural and functional connectivity has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This fusion representation better reflects familial relatedness, preserves age- and sex-relevant information, and enhances cognition-relevant information. The Krakencoder can be applied, without retraining, to new out-of-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a notable leap forward in capturing the relationship between multimodal brain connectomes in an individualized, behaviorally and demographically relevant way.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"1583-1592\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02706-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02706-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大脑连接可以通过多种方式进行评估,这取决于模式和处理策略。在这里,我们展示了Krakencoder,这是一个联合连接体映射工具,可以同时双向转换结构和功能连接,以及通过共同的潜在表示在不同的地图集和处理选择之间进行转换。这些映射显示出卓越的准确性和个人层面的可识别性;与现有模型相比,结构连接和功能连接映射的可识别性提高了42-54%。Krakencoder通过共享的低维潜在空间结合了所有的连接体风格。这种融合表征更好地反映了家族关系,保留了与年龄和性别相关的信息,增强了与认知相关的信息。Krakencoder可以在不需要再训练的情况下应用于新的分布外数据,同时仍然保留连接组预测中的个体间差异和潜在表征中的家族关系。Krakencoder在以个性化、行为和人口统计学相关的方式捕捉多模态脑连接体之间的关系方面是一个显著的飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Krakencoder: a unified brain connectome translation and fusion tool.

Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here, we present the Krakencoder, a joint connectome mapping tool that simultaneously bidirectionally translates between structural and functional connectivity, and between different atlases and processing choices via a common latent representation. These mappings demonstrate exceptional accuracy and individual-level identifiability; the mapping between structural and functional connectivity has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This fusion representation better reflects familial relatedness, preserves age- and sex-relevant information, and enhances cognition-relevant information. The Krakencoder can be applied, without retraining, to new out-of-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a notable leap forward in capturing the relationship between multimodal brain connectomes in an individualized, behaviorally and demographically relevant way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信