Ioannis Voulgaris, Anders Nygaard Nielsen, Tine Petersen, Sanne Jensen
{"title":"消除粘稠度挑战在连续培养酵母产生GLP-1样肽。","authors":"Ioannis Voulgaris, Anders Nygaard Nielsen, Tine Petersen, Sanne Jensen","doi":"10.1186/s12934-025-02745-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergence of GLP-1s for the treatment of diabetes, obesity and other diseases has led to increased focus on finding efficient ways to produce the peptides in sufficient amounts to satisfy the ever-increasing demand. Although the use of microbial hosts constitutes the cheapest, easiest and safest way to produce these peptides in high volumes, process challenges still exist that reduce the production capacity. One of the main production challenges is the high viscosity of cultivation broths, which reduces the mass and oxygen transfer, thereby creating substrate and oxygen gradients that potentially lead to unwanted secondary metabolism and eventually compromises capacity.</p><p><strong>Results: </strong>The methodology used to identify the underlying factors of highly viscous broths during the recombinant production of GLP-1 precursors in S. cerevisiae in continuous cultivation is presented. Two root causes leading to highly viscous broths were uncovered and solutions identified. The first one is found in the soluble fraction of the broth and relates to the aggregation of GLP-1 precursor molecules that leads to highly viscous, shear thinning cultivation broths. The cultivation conditions under which the aggregation occurs and the consequences for both cultivation and product recovery are discussed. The second source of viscosity is found in the insoluble fraction of the cultivation broth and relates to cell aggregation due to Amn1p dependent incomplete separation of mother and daughter cells. This type of cell aggregation causes formation of cell clumps and leads to high viscosity cultivation broths with mild shear thickening properties.</p><p><strong>Conclusions: </strong>To eliminate the GLP-1 peptide related viscosity, a new generation of yeast host strains that tolerates cultivation at increased pH values, above those that cause GLP-1 precursor aggregation, were utilized. In the case of the cell derived viscosity, yeast strains carrying either a deletion of the AMN1 gene or integration of the non-clumping AMN1<sup>D368V</sup> gene variant were employed. The implementation of these changes led to a scalable cultivation process characterized by a significant improved oxygen mass transfer attributed to the low viscosity and Newtonian behaviour of the cultivation broth.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"130"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eliminating viscosity challenges in continuous cultivation of yeast producing a GLP-1 like peptide.\",\"authors\":\"Ioannis Voulgaris, Anders Nygaard Nielsen, Tine Petersen, Sanne Jensen\",\"doi\":\"10.1186/s12934-025-02745-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The emergence of GLP-1s for the treatment of diabetes, obesity and other diseases has led to increased focus on finding efficient ways to produce the peptides in sufficient amounts to satisfy the ever-increasing demand. Although the use of microbial hosts constitutes the cheapest, easiest and safest way to produce these peptides in high volumes, process challenges still exist that reduce the production capacity. One of the main production challenges is the high viscosity of cultivation broths, which reduces the mass and oxygen transfer, thereby creating substrate and oxygen gradients that potentially lead to unwanted secondary metabolism and eventually compromises capacity.</p><p><strong>Results: </strong>The methodology used to identify the underlying factors of highly viscous broths during the recombinant production of GLP-1 precursors in S. cerevisiae in continuous cultivation is presented. Two root causes leading to highly viscous broths were uncovered and solutions identified. The first one is found in the soluble fraction of the broth and relates to the aggregation of GLP-1 precursor molecules that leads to highly viscous, shear thinning cultivation broths. The cultivation conditions under which the aggregation occurs and the consequences for both cultivation and product recovery are discussed. The second source of viscosity is found in the insoluble fraction of the cultivation broth and relates to cell aggregation due to Amn1p dependent incomplete separation of mother and daughter cells. This type of cell aggregation causes formation of cell clumps and leads to high viscosity cultivation broths with mild shear thickening properties.</p><p><strong>Conclusions: </strong>To eliminate the GLP-1 peptide related viscosity, a new generation of yeast host strains that tolerates cultivation at increased pH values, above those that cause GLP-1 precursor aggregation, were utilized. In the case of the cell derived viscosity, yeast strains carrying either a deletion of the AMN1 gene or integration of the non-clumping AMN1<sup>D368V</sup> gene variant were employed. The implementation of these changes led to a scalable cultivation process characterized by a significant improved oxygen mass transfer attributed to the low viscosity and Newtonian behaviour of the cultivation broth.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"130\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-025-02745-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02745-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Eliminating viscosity challenges in continuous cultivation of yeast producing a GLP-1 like peptide.
Background: The emergence of GLP-1s for the treatment of diabetes, obesity and other diseases has led to increased focus on finding efficient ways to produce the peptides in sufficient amounts to satisfy the ever-increasing demand. Although the use of microbial hosts constitutes the cheapest, easiest and safest way to produce these peptides in high volumes, process challenges still exist that reduce the production capacity. One of the main production challenges is the high viscosity of cultivation broths, which reduces the mass and oxygen transfer, thereby creating substrate and oxygen gradients that potentially lead to unwanted secondary metabolism and eventually compromises capacity.
Results: The methodology used to identify the underlying factors of highly viscous broths during the recombinant production of GLP-1 precursors in S. cerevisiae in continuous cultivation is presented. Two root causes leading to highly viscous broths were uncovered and solutions identified. The first one is found in the soluble fraction of the broth and relates to the aggregation of GLP-1 precursor molecules that leads to highly viscous, shear thinning cultivation broths. The cultivation conditions under which the aggregation occurs and the consequences for both cultivation and product recovery are discussed. The second source of viscosity is found in the insoluble fraction of the cultivation broth and relates to cell aggregation due to Amn1p dependent incomplete separation of mother and daughter cells. This type of cell aggregation causes formation of cell clumps and leads to high viscosity cultivation broths with mild shear thickening properties.
Conclusions: To eliminate the GLP-1 peptide related viscosity, a new generation of yeast host strains that tolerates cultivation at increased pH values, above those that cause GLP-1 precursor aggregation, were utilized. In the case of the cell derived viscosity, yeast strains carrying either a deletion of the AMN1 gene or integration of the non-clumping AMN1D368V gene variant were employed. The implementation of these changes led to a scalable cultivation process characterized by a significant improved oxygen mass transfer attributed to the low viscosity and Newtonian behaviour of the cultivation broth.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems