氧化应激反应中的长依赖蛋白水解。

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Kubra Yigit, Peter Chien
{"title":"氧化应激反应中的长依赖蛋白水解。","authors":"Kubra Yigit, Peter Chien","doi":"10.1128/jb.00005-25","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulation of reactive oxygen species (ROS) induces oxidative stress, leading to substantial damage to cellular macromolecules, necessitating efficient protein quality control mechanisms. The Lon protease, a highly conserved ATP-dependent protease, is thought to play a central role in mitigating oxidative stress by targeting damaged and misfolded proteins for degradation. This review examines the role of Lon in oxidative stress responses, including its role in degrading oxidized proteins, regulating antioxidant pathways, and modulating heme and Fe-S cluster homeostasis. We highlight cases of substrate recognition through structural changes and describe situations where Lon activity is further regulated by redox conditions. By synthesizing studies across a range of organisms, we find that despite the clear importance of Lon for oxidative stress tolerance, universal rules for Lon degradation of damaged proteins during this response remain unclear.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0000525"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lon-dependent proteolysis in oxidative stress responses.\",\"authors\":\"Kubra Yigit, Peter Chien\",\"doi\":\"10.1128/jb.00005-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accumulation of reactive oxygen species (ROS) induces oxidative stress, leading to substantial damage to cellular macromolecules, necessitating efficient protein quality control mechanisms. The Lon protease, a highly conserved ATP-dependent protease, is thought to play a central role in mitigating oxidative stress by targeting damaged and misfolded proteins for degradation. This review examines the role of Lon in oxidative stress responses, including its role in degrading oxidized proteins, regulating antioxidant pathways, and modulating heme and Fe-S cluster homeostasis. We highlight cases of substrate recognition through structural changes and describe situations where Lon activity is further regulated by redox conditions. By synthesizing studies across a range of organisms, we find that despite the clear importance of Lon for oxidative stress tolerance, universal rules for Lon degradation of damaged proteins during this response remain unclear.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0000525\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00005-25\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00005-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活性氧(ROS)的积累引起氧化应激,导致细胞大分子的实质性损伤,需要有效的蛋白质质量控制机制。Lon蛋白酶是一种高度保守的atp依赖性蛋白酶,被认为通过靶向受损和错误折叠的蛋白质降解,在减轻氧化应激中发挥核心作用。本文综述了Lon在氧化应激反应中的作用,包括其在降解氧化蛋白、调节抗氧化途径以及调节血红素和Fe-S簇稳态中的作用。我们重点介绍了通过结构变化识别底物的情况,并描述了氧化还原条件进一步调节Lon活性的情况。通过对一系列生物体的综合研究,我们发现,尽管Lon对氧化应激耐受性具有明显的重要性,但在这种反应中,受损蛋白的Lon降解的普遍规律仍不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lon-dependent proteolysis in oxidative stress responses.

Accumulation of reactive oxygen species (ROS) induces oxidative stress, leading to substantial damage to cellular macromolecules, necessitating efficient protein quality control mechanisms. The Lon protease, a highly conserved ATP-dependent protease, is thought to play a central role in mitigating oxidative stress by targeting damaged and misfolded proteins for degradation. This review examines the role of Lon in oxidative stress responses, including its role in degrading oxidized proteins, regulating antioxidant pathways, and modulating heme and Fe-S cluster homeostasis. We highlight cases of substrate recognition through structural changes and describe situations where Lon activity is further regulated by redox conditions. By synthesizing studies across a range of organisms, we find that despite the clear importance of Lon for oxidative stress tolerance, universal rules for Lon degradation of damaged proteins during this response remain unclear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信