Wonhee Kim, Jinjoo Han, Shraddha Chauhan, Jeong Wook Lee
{"title":"无细胞蛋白合成和囊泡系统用于可编程治疗制造和递送。","authors":"Wonhee Kim, Jinjoo Han, Shraddha Chauhan, Jeong Wook Lee","doi":"10.1186/s13036-025-00523-x","DOIUrl":null,"url":null,"abstract":"<p><p>The convergence of cell-free protein synthesis (CFPS) and vesicle-based delivery platforms presents a promising avenue for therapeutic development. The open environment of CFPS offers precise control over protein synthesis by enabling the modulation of synthetic conditions. Additionally, vesicle-based platforms provide enhanced stability, bioavailability, and targeted delivery. This synergy facilitates the efficient production of complex proteins-including membrane proteins, antibody fragments, and proteins requiring post-translational modifications (PTMs)-and supports novel drug delivery strategies. While existing reviews have covered synthetic cells and biomanufacturing broadly, a dedicated analysis of CFPS system-containing vesicles (CFVs) for therapeutic applications remains absent from the literature. This review addresses this knowledge gap by providing a comprehensive examination of CFVs, highlighting their potential as programmable drug delivery platforms through the integration of genetic circuits. It emphasizes the advantages of CFPS over traditional cell-based approaches and explores the synergistic benefits of combining CFPS with various vesicle systems. These systems offer dynamic control over therapeutic protein production and targeted delivery, enabling precise responses to specific signals in complex environments. Although challenges such as low protein yield and imperfect targeting remain, potential optimization strategies are discussed. This analysis highlights the significant potential of integrating CFPS and vesicle-based delivery to advance biomanufacturing, therapeutic development, and synthetic cell systems, thereby opening new avenues in medicine and healthcare.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"55"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139124/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell-free protein synthesis and vesicle systems for programmable therapeutic manufacturing and delivery.\",\"authors\":\"Wonhee Kim, Jinjoo Han, Shraddha Chauhan, Jeong Wook Lee\",\"doi\":\"10.1186/s13036-025-00523-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The convergence of cell-free protein synthesis (CFPS) and vesicle-based delivery platforms presents a promising avenue for therapeutic development. The open environment of CFPS offers precise control over protein synthesis by enabling the modulation of synthetic conditions. Additionally, vesicle-based platforms provide enhanced stability, bioavailability, and targeted delivery. This synergy facilitates the efficient production of complex proteins-including membrane proteins, antibody fragments, and proteins requiring post-translational modifications (PTMs)-and supports novel drug delivery strategies. While existing reviews have covered synthetic cells and biomanufacturing broadly, a dedicated analysis of CFPS system-containing vesicles (CFVs) for therapeutic applications remains absent from the literature. This review addresses this knowledge gap by providing a comprehensive examination of CFVs, highlighting their potential as programmable drug delivery platforms through the integration of genetic circuits. It emphasizes the advantages of CFPS over traditional cell-based approaches and explores the synergistic benefits of combining CFPS with various vesicle systems. These systems offer dynamic control over therapeutic protein production and targeted delivery, enabling precise responses to specific signals in complex environments. Although challenges such as low protein yield and imperfect targeting remain, potential optimization strategies are discussed. This analysis highlights the significant potential of integrating CFPS and vesicle-based delivery to advance biomanufacturing, therapeutic development, and synthetic cell systems, thereby opening new avenues in medicine and healthcare.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"55\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139124/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00523-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00523-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cell-free protein synthesis and vesicle systems for programmable therapeutic manufacturing and delivery.
The convergence of cell-free protein synthesis (CFPS) and vesicle-based delivery platforms presents a promising avenue for therapeutic development. The open environment of CFPS offers precise control over protein synthesis by enabling the modulation of synthetic conditions. Additionally, vesicle-based platforms provide enhanced stability, bioavailability, and targeted delivery. This synergy facilitates the efficient production of complex proteins-including membrane proteins, antibody fragments, and proteins requiring post-translational modifications (PTMs)-and supports novel drug delivery strategies. While existing reviews have covered synthetic cells and biomanufacturing broadly, a dedicated analysis of CFPS system-containing vesicles (CFVs) for therapeutic applications remains absent from the literature. This review addresses this knowledge gap by providing a comprehensive examination of CFVs, highlighting their potential as programmable drug delivery platforms through the integration of genetic circuits. It emphasizes the advantages of CFPS over traditional cell-based approaches and explores the synergistic benefits of combining CFPS with various vesicle systems. These systems offer dynamic control over therapeutic protein production and targeted delivery, enabling precise responses to specific signals in complex environments. Although challenges such as low protein yield and imperfect targeting remain, potential optimization strategies are discussed. This analysis highlights the significant potential of integrating CFPS and vesicle-based delivery to advance biomanufacturing, therapeutic development, and synthetic cell systems, thereby opening new avenues in medicine and healthcare.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.