它们眼中的秘密:对比目鱼独特结构的眶下窝的回顾。

IF 1.9 3区 医学 Q2 ANATOMY & MORPHOLOGY
Paulo Presti, G David Johnson, Aléssio Datovo
{"title":"它们眼中的秘密:对比目鱼独特结构的眶下窝的回顾。","authors":"Paulo Presti, G David Johnson, Aléssio Datovo","doi":"10.1111/joa.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Flatfishes (Pleuronectiformes) are famous for having one of the most peculiar anatomical transformations in the animal kingdom, the ontogenetic migration of one eye from one side of the head to the other. But the eyes of flatfishes also carry a much lesser known but equally unique modification: an organ called the recessus orbitalis, which is responsible for projecting the eyeball above the level of the head, thus expanding their fields of vision. However, the morphology and distribution of the organ have never been thoroughly investigated. Previous studies reported only part of the recessus orbitalis and mistakenly suggested that it opened into the orbital cavity. We show that the organ forms a fully enclosed system consisting of two interconnected chambers: the facial chamber, which corresponds to the organ previously reported in the literature, and the scleral chamber, which encases the inner portions of the eyeball and is more challenging to detect through manual dissection. The organ is filled with interstitial fluid, and the walls of both chambers-especially the facial one-contain smooth, not skeletal and muscle fibers. These findings combined with field observations allowed us to propose a new functional model for the recessus orbitalis. The organ seems to operate as a dual-pump system, dynamically shifting interstitial fluid between the facial and scleral chambers. Inflation of the facial chamber results in eye retraction, whereas inflation of the scleral chamber causes eye protrusion. The presence of smooth muscle fibers, which can sustain contractions with minimal energy expenditure, supports this inferred mechanism, allowing the eye to remain fully protruded or retracted for extended periods. The recessus orbitalis has never been confirmed in several flatfish families, and the organ was recently considered absent in Psettodidae, the sister group to all other flatfishes. However, we positively identified this organ in all 74 species examined representing all 16 currently recognized flatfish families, including Psettodidae. This indicates that the presence of the recessus orbitalis is an evolutionary novelty (synapomorphy) for the entire Pleuronectiformes.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The secret in their eyes: A review of the recessus orbitalis, a unique structure of flatfishes.\",\"authors\":\"Paulo Presti, G David Johnson, Aléssio Datovo\",\"doi\":\"10.1111/joa.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flatfishes (Pleuronectiformes) are famous for having one of the most peculiar anatomical transformations in the animal kingdom, the ontogenetic migration of one eye from one side of the head to the other. But the eyes of flatfishes also carry a much lesser known but equally unique modification: an organ called the recessus orbitalis, which is responsible for projecting the eyeball above the level of the head, thus expanding their fields of vision. However, the morphology and distribution of the organ have never been thoroughly investigated. Previous studies reported only part of the recessus orbitalis and mistakenly suggested that it opened into the orbital cavity. We show that the organ forms a fully enclosed system consisting of two interconnected chambers: the facial chamber, which corresponds to the organ previously reported in the literature, and the scleral chamber, which encases the inner portions of the eyeball and is more challenging to detect through manual dissection. The organ is filled with interstitial fluid, and the walls of both chambers-especially the facial one-contain smooth, not skeletal and muscle fibers. These findings combined with field observations allowed us to propose a new functional model for the recessus orbitalis. The organ seems to operate as a dual-pump system, dynamically shifting interstitial fluid between the facial and scleral chambers. Inflation of the facial chamber results in eye retraction, whereas inflation of the scleral chamber causes eye protrusion. The presence of smooth muscle fibers, which can sustain contractions with minimal energy expenditure, supports this inferred mechanism, allowing the eye to remain fully protruded or retracted for extended periods. The recessus orbitalis has never been confirmed in several flatfish families, and the organ was recently considered absent in Psettodidae, the sister group to all other flatfishes. However, we positively identified this organ in all 74 species examined representing all 16 currently recognized flatfish families, including Psettodidae. This indicates that the presence of the recessus orbitalis is an evolutionary novelty (synapomorphy) for the entire Pleuronectiformes.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.70000\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.70000","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

比目鱼(Pleuronectiformes)以动物王国中最奇特的解剖变化之一而闻名,即一只眼睛从头部的一侧迁移到另一侧。但比目鱼的眼睛也有一种鲜为人知但同样独特的变化:一种被称为眶后窝的器官,它负责将眼球突出到头部以上,从而扩大它们的视野。然而,该器官的形态和分布从未被彻底研究过。以前的研究只报道了部分眶内凹,并错误地认为它进入眶腔。我们发现,该器官形成了一个完全封闭的系统,由两个相互连接的腔室组成:面腔,与文献中先前报道的器官相对应,巩膜腔,包裹眼球的内部部分,通过手工解剖更具有挑战性。器官充满了间质液,两个腔室的壁——尤其是面腔的壁——含有光滑的纤维,而不是骨骼和肌肉纤维。这些发现与实地观察相结合,使我们能够提出一个新的眶后缩功能模型。这个器官似乎是一个双泵系统,在面部和巩膜腔之间动态地转移间质液。面腔的膨胀导致眼内缩,而巩膜腔的膨胀导致眼外突。平滑肌纤维的存在,能够以最小的能量消耗维持收缩,支持这一推断机制,使眼睛在较长时间内保持完全的凸出或收缩。眶下肌从未在几个比目鱼科中被证实,最近被认为在所有其他比目鱼的姐妹组Psettodidae中没有这个器官。然而,我们在所有74个物种中都确定了这个器官,这些物种代表了所有16个目前公认的比目鱼科,包括拟鱼科。这表明眼窝凹肌的存在是整个胸膜形动物进化上的新现象(突触形态)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The secret in their eyes: A review of the recessus orbitalis, a unique structure of flatfishes.

Flatfishes (Pleuronectiformes) are famous for having one of the most peculiar anatomical transformations in the animal kingdom, the ontogenetic migration of one eye from one side of the head to the other. But the eyes of flatfishes also carry a much lesser known but equally unique modification: an organ called the recessus orbitalis, which is responsible for projecting the eyeball above the level of the head, thus expanding their fields of vision. However, the morphology and distribution of the organ have never been thoroughly investigated. Previous studies reported only part of the recessus orbitalis and mistakenly suggested that it opened into the orbital cavity. We show that the organ forms a fully enclosed system consisting of two interconnected chambers: the facial chamber, which corresponds to the organ previously reported in the literature, and the scleral chamber, which encases the inner portions of the eyeball and is more challenging to detect through manual dissection. The organ is filled with interstitial fluid, and the walls of both chambers-especially the facial one-contain smooth, not skeletal and muscle fibers. These findings combined with field observations allowed us to propose a new functional model for the recessus orbitalis. The organ seems to operate as a dual-pump system, dynamically shifting interstitial fluid between the facial and scleral chambers. Inflation of the facial chamber results in eye retraction, whereas inflation of the scleral chamber causes eye protrusion. The presence of smooth muscle fibers, which can sustain contractions with minimal energy expenditure, supports this inferred mechanism, allowing the eye to remain fully protruded or retracted for extended periods. The recessus orbitalis has never been confirmed in several flatfish families, and the organ was recently considered absent in Psettodidae, the sister group to all other flatfishes. However, we positively identified this organ in all 74 species examined representing all 16 currently recognized flatfish families, including Psettodidae. This indicates that the presence of the recessus orbitalis is an evolutionary novelty (synapomorphy) for the entire Pleuronectiformes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信