KCNA3、KCNA4和KCNA6的新生错义变异可引起早发性发育性癫痫性脑病。

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meng-Han Tsai, Chia-Hua Lo, You-Xuan Liu, Sheng-Nan Wu, Cheng-Yen Kuo, Yi-Hsuan Liu, Ying-Chao Chang, Kuan-Lin Lin, Po-Cheng Hung, Hwei-Hsien Chen, Jian-Liang Chen, Chi-Kuang Yao, Eric Hwang, Ya-Jean Wang
{"title":"KCNA3、KCNA4和KCNA6的新生错义变异可引起早发性发育性癫痫性脑病。","authors":"Meng-Han Tsai, Chia-Hua Lo, You-Xuan Liu, Sheng-Nan Wu, Cheng-Yen Kuo, Yi-Hsuan Liu, Ying-Chao Chang, Kuan-Lin Lin, Po-Cheng Hung, Hwei-Hsien Chen, Jian-Liang Chen, Chi-Kuang Yao, Eric Hwang, Ya-Jean Wang","doi":"10.1093/hmg/ddaf090","DOIUrl":null,"url":null,"abstract":"<p><p>Shaker-type potassium channel genes (Kv1) have been linked to human epilepsies, including KCNA1 (Kv1.1), KCNA2 (Kv1.2), and more recently, KCNA3 (Kv1.3) and KCNA6 (Kv1.6). In this study, we report three early-onset epilepsy cases with de novo missense mutations in Shaker-type channel genes, including Kv1.3, KCNA4 (Kv1.4), and Kv1.6, identified through whole exome sequencing trio study. The newly identified Kv1.3-V478M, Kv1.6-T421I, and Kv1.4-V558L mutations are located within the channel selectivity filter or S6 hinge, both critical for channel gating. These variants are in paralogous locations of previously reported pathogenic variant in KCNA2. These mutations do not significantly affect trafficking and plasma membrane localization of the Kv channels. In contrast, our patch-clamp analysis in a cell-based system reveals that all three mutations cause severe loss-of-function channel properties. Additionally, our Drosophila model highlights the detrimental effects of Kv1.3-V478M on neural circuit activity. Current findings suggest that, similar to Kv1.1, Kv1.2, and Kv1.3, both loss-of-function and gain-of-function mutations in Kv1.6 may contribute to the phenotypic variability in epilepsy severity. Our study also extends the list of potassium channel genes implicated in human epilepsy, introducing Kv1.4 as a novel epilepsy-related gene.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De novo missense variants of KCNA3, KCNA4, and KCNA6 cause early onset developmental epileptic encephalopathy.\",\"authors\":\"Meng-Han Tsai, Chia-Hua Lo, You-Xuan Liu, Sheng-Nan Wu, Cheng-Yen Kuo, Yi-Hsuan Liu, Ying-Chao Chang, Kuan-Lin Lin, Po-Cheng Hung, Hwei-Hsien Chen, Jian-Liang Chen, Chi-Kuang Yao, Eric Hwang, Ya-Jean Wang\",\"doi\":\"10.1093/hmg/ddaf090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shaker-type potassium channel genes (Kv1) have been linked to human epilepsies, including KCNA1 (Kv1.1), KCNA2 (Kv1.2), and more recently, KCNA3 (Kv1.3) and KCNA6 (Kv1.6). In this study, we report three early-onset epilepsy cases with de novo missense mutations in Shaker-type channel genes, including Kv1.3, KCNA4 (Kv1.4), and Kv1.6, identified through whole exome sequencing trio study. The newly identified Kv1.3-V478M, Kv1.6-T421I, and Kv1.4-V558L mutations are located within the channel selectivity filter or S6 hinge, both critical for channel gating. These variants are in paralogous locations of previously reported pathogenic variant in KCNA2. These mutations do not significantly affect trafficking and plasma membrane localization of the Kv channels. In contrast, our patch-clamp analysis in a cell-based system reveals that all three mutations cause severe loss-of-function channel properties. Additionally, our Drosophila model highlights the detrimental effects of Kv1.3-V478M on neural circuit activity. Current findings suggest that, similar to Kv1.1, Kv1.2, and Kv1.3, both loss-of-function and gain-of-function mutations in Kv1.6 may contribute to the phenotypic variability in epilepsy severity. Our study also extends the list of potassium channel genes implicated in human epilepsy, introducing Kv1.4 as a novel epilepsy-related gene.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf090\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf090","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

shaker型钾通道基因(Kv1)与人类癫痫有关,包括KCNA1 (Kv1.1), KCNA2 (Kv1.2),以及最近的KCNA3 (Kv1.3)和KCNA6 (Kv1.6)。在这项研究中,我们报告了三例早发性癫痫患者,他们通过全外显子组测序三重奏研究发现了shaker型通道基因Kv1.3、KCNA4 (Kv1.4)和Kv1.6从头错义突变。新发现的Kv1.3-V478M、Kv1.6-T421I和Kv1.4-V558L突变位于通道选择性滤波器或S6铰链内,它们都是通道门控的关键。这些变异与先前报道的KCNA2致病性变异位置相似。这些突变对Kv通道的转运和质膜定位没有显著影响。相比之下,我们在基于细胞的系统中进行的膜片钳分析显示,所有三种突变都会导致严重的通道功能丧失。此外,我们的果蝇模型强调了Kv1.3-V478M对神经回路活动的有害影响。目前的研究结果表明,与Kv1.1、Kv1.2和Kv1.3类似,Kv1.6的功能丧失和功能获得突变都可能导致癫痫严重程度的表型变异。我们的研究还扩展了与人类癫痫有关的钾通道基因列表,引入了Kv1.4作为一种新的癫痫相关基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De novo missense variants of KCNA3, KCNA4, and KCNA6 cause early onset developmental epileptic encephalopathy.

Shaker-type potassium channel genes (Kv1) have been linked to human epilepsies, including KCNA1 (Kv1.1), KCNA2 (Kv1.2), and more recently, KCNA3 (Kv1.3) and KCNA6 (Kv1.6). In this study, we report three early-onset epilepsy cases with de novo missense mutations in Shaker-type channel genes, including Kv1.3, KCNA4 (Kv1.4), and Kv1.6, identified through whole exome sequencing trio study. The newly identified Kv1.3-V478M, Kv1.6-T421I, and Kv1.4-V558L mutations are located within the channel selectivity filter or S6 hinge, both critical for channel gating. These variants are in paralogous locations of previously reported pathogenic variant in KCNA2. These mutations do not significantly affect trafficking and plasma membrane localization of the Kv channels. In contrast, our patch-clamp analysis in a cell-based system reveals that all three mutations cause severe loss-of-function channel properties. Additionally, our Drosophila model highlights the detrimental effects of Kv1.3-V478M on neural circuit activity. Current findings suggest that, similar to Kv1.1, Kv1.2, and Kv1.3, both loss-of-function and gain-of-function mutations in Kv1.6 may contribute to the phenotypic variability in epilepsy severity. Our study also extends the list of potassium channel genes implicated in human epilepsy, introducing Kv1.4 as a novel epilepsy-related gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信